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In the analysis of spin structures a 'natural' point of view looks for the set of symmetry operations 
which leave the magnetic structure invariant and has led to the development of magnetic or Shubnikov 
groups. A second point of view presented here simply asks for the transformation properties of a 
magnetic structure under the classical symmetry operations of the 230 conventional space groups and 
allows one to assign irreducible representations of the actual space group to all known magnetic 
structures. The superiority of representation theory over symmetry invariance under Shubnikov groups 
is already demonstrated by the fact proven here that the only invariant magnetic structures describable 
by magnetic groups belong to real one-dimensional representations of the 230 space groups. Representa- 
tion theory on the other hand is richer because the number of representations is infinite, i.e. it can deal 
not only with magnetic structures belonging to one-dimensional real representations, but also with 
those belonging to one-dimensional complex and even to two-dimensional and three-dimensional 
representations associated with any k vector in or on the first Brillouin zone. 

We generate from the transformation matrices of the spins a representation F of the space group 
which is reducible. We find the basis vectors of the irreducible representations contained in/". 

The basis vectors are linear combinations of the spins and describe the structure. The method is 
first applied to the k = 0 case where magnetic and chemical cells are identical and then extended to the 
case where magnetic and chemical cells are different (k #0) with special emphasis on k vectors lying 
on the surface of the first Brillouin zone in non-symmorphic space groups. As a specific example we 
consider several methods of finding the two-dimensional irreducible representations and its basis vectors 
associated with k = ½ b2 = [0½0] in space group Pbnm (D12~). 

We illustrate the physical context of representation theory by constructing an effective spin Hamil- 
tonian H invariant under the crystallographic space group and under spin reversal. H is even in the 
spins and automatically invariant under the (isomorphous) magnetic group. We show by the example 
of CoO that the invariants in H, formed with the help of basis vectors, give information on the nature 
of spin coupling as for instance isotropic (Heisenberg-Ndel) coupling, vectorial (Dzialoshinski-Moriya) 
and anisotropic symmetric couplings. 

Magnetic structures, cited in the text to show the implications of the representation theory of space 
groups are ErFeO3, ErCrO3, TbFeO3, TbCrO3, DyCrO3, YFeO3, V2CaO4, fl-CoSO4, Er203, CoO and 
RMn205 (R = Bi, Y or rare earth). 

Representation theory of magnetic groups must be considered when the Hamiltonian contains terms 
which are odd in the spins. The case may occur when the magnetic energy is coupled with other forms 
of energy as for instance in the field of magneto-electricity. Here again representation theory correctly 
predicts the couplings between magnetic and electric polarizations as shown on LiCoPO4 and (previously) 
on FeGaO3. 

1. Introduction 

We develop here a method characterized as 'macro- 
scopic' which is able to predict all possible magnetic 
couplings in the frame of  the known 230 crystallo- 
graphic space groups. 

When  we state that 'a crystal has a space group'  we 
evoke the concept of  invariance of  atomic positions 
under the symmetry operations of the space group. In 
the same way one was natural ly led to associate with 
a magnetic structure new sets of  symmetry elements, 
the so-called magnetic or Shubnikov groups, which 
should describe the invariance of magnetic structures. 
We say 'should '  because today there are many  instances 
where known magnetic structures are not invariant  
under  any Shubnikov groups. 

In opposit ion to the (widely accepted) view of  sym- 
metry invariance under the Shubnikov groups we de- 
velop in § 2 a new point  of  view which investigates the 
transformation properties of  magnetic structures under  
the operations of  the ' tr ivial '  230 space groups. More- 
over this new point  of  view will prove to be more gen- 
eral. We show indeed that all the magnetic groups can 
be generated from the knowledge of  the ensemble of  
one-dimensional  real representations of the 230 space 
groups;  in other words the 'magnetic '  groups can only 
describe those magnetic structures which belong to one- 
dimensional  representations, having characters + 1 or 
- 1 ,  of the classical space groups. 

The general theory is outlined in § 3. It uses repre- 
sentation theory, the main  problem being to find ir- 
reducible representations and the basis functions which 
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belong to them and which are able to describe the 
magnetic structures, their transformation properties and 
even the magnetic couplings. 

Although this sounds very abstract, the application 
is easy and is illustrated in § 4 by the simple case where 
chemical and magnetic cells are identical. Such struc- 
tures are associated with a wave vector k = 0. Specific 
examples will show the advantage of the method and 
some of the difficulties already faced by Shubnikov 
groups with these structures. 

In § 5 we extend the application of the method to 
any k vector in the first Brillouin zone (i.e. to any 
magnetic, even non-commensurable cell) with special 
emphasis on k vectors lying at the surface of the Bril- 
louin zone in non-symmorphic space groups. Two 
methods are used: an algebraic one due to Olbrychski 
which finds the irreducible representations, and a more 
geometrical one which, starting from the transforma- 
tion matrices, provides the irreducible representations 
and the basis functions. As an illustration of two-di- 
mensional irreducible representations we consider more 
fully the wave vector k=[0-}20 ] in space group Pbnm. 
We also indicate examples of structures (TbCrO3, 
DyCrO3, VzCaO4, RMn205) belonging to k vectors on 
the Brillouin zone and solved by the methods of § 5. 

We examine in § 4 the physical context of represen- 
tation theory. A basic role is played by the 'effective 
macroscopic spin Hamiltonian' which gives rise to the 
magnetic structure. We study the implications of the 
postulate that the 'effective spin Hamiltonian' is an 
even function of the spins and find that the time re- 
versal operator is not needed for the analysis of mag- 
netic structures. Conclusions are reached, concerning 
the coupling and decoupling of magnetic atoms in the 
approximation of a Hamiltonian of order two. The in- 
fluence of higher order terms is also examined. From 
the knowledge of the basis vectors and the known 
magnetic structure one can not only construct a spin 
Hamiltonian, but also may infer the existence of the 
various microscopic couplings known as Heisenberg- 
N6el coupling, Dzialoshinski-Moriya coupling, crystal- 
field and dipolar or tensor coupling of spins. As a 
specific example we have chosen the magnetic structure 
of CoO as proposed by van Laar (1965). 

As long as the time reversal operator R is defined 
by R 2= 1, magnetic groups are strictly isomorphous 
with the classical groups and thus have the same ir- 
reducible representations. From §§ 1 to 6 the reader 
might conclude that magnetic groups may be disre- 
garded. This is however untrue. Magnetic group theory 
must be considered when in the energy expression mag- 
netic and non-magnetic terms are coupled in such a 
way that the spins or magnetic moments occur in odd 
powers. As a particular case we investigate in § 7 
magnetoelectricity which can be described as originat- 
ing from a coupling, bilinear in a magnetic and an 
electric polarization. Here again group theory is useful 
and predicts in all known instances the spatial relation 
between electric and magnetic polarization. 

2. Symmetry invarianee and representation theory 
At first sight it seems natural to consider as far as the 
symmetry of a spin configuration is concerned all those 
symmetry operations which leave the spin structure 
invariant. Historically one has introduced new (primed) 
symmetry operations C£, the so-called 'antielements' 
which are the product of the conventional (unprimed) 
symmetry elements C~ with the time- (or current-) re- 
versal operator R of order two. 

C£=C~R=RC~;  R 2= 1. (2-1) 

These new symmetry elements considerably enlarge 
the number of possible groups. The 32 crystalline clas- 
ses grow to 90 classes and the 230 space groups increase 
to 1651 'magnetic groups'. Good accounts may be 
found in the following references: Belov, Neronova & 
Smirnova (1957), Donnay, Corliss, Donnay, Elliott & 
Hastings (1958), Opechowski & Guccione (1965). 

From the point of view of representation theory it 
is equivalent to say that 'a crystal structure has a space 
group G' or that it 'transforms according to the iden- 
tity representation of space group G', i.e. each sym- 
metry operation of G may be represented by + 1 and 
thus leaves the crystal invariant. In the same way, 
when a magnetic structure may be described by a 
Shubnikov group G' it belongs to the identity repre- 
sentation of that group G'. Although such a statement 
might appear as obvious as a 'v~rit6 de La Palice'* 
it is of a very essential nature because it contains all 
the shortcomings of the use of magnetic groups in the 
analysis of magnetic structures. 

Indeed the Shubnikov groups already meet with dif- 
ficulties in the case of helical structures where 'colour' 
groups of order infinity would be needed. 

Other difficulties arise as we shall see in § 4 for 
canted spin structures when different spin components 
may belong to different representations and also when 
spin structures belong to two- or three-dimensional 
irreducible representations. 

An entirely different point of view asks the following 
question: How does a given spin configuration trans- 
form under 'classical' symmetry operations C~ of the 
space group G in which the crystal is embedded? It is 
then always possible to characterize the transforma- 
tion properties of a spin structure by indicating the 
irreducible representations of the space group G ac- 
cording to which the spin components transform. There 
remains naturally the problem of how complete such 
a description might be. It is easy to show that we get 
at least from representation theory the same informa- 
tion which the magnetic groups are supposed to give. 

Abstractly this may be stated as follows: 'The num- 
ber of magnetic groups is equal to the number of one- 
dimensional space-group representations which are dis- 
tinct in the abstract sense and have real characters + 1 

* La Palice (1470-1525) is synonymous with evident state- 
ments. He was reported to have been 'still living a quarter 
of an hour before his death'. 
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or --1'. Two representations are said to be 'distinct 
in the abstract sense' if they cannot be transformed 
into each other by another setting (changes of axes and 
origins). 

Magnetic classes 

As a first example, consider the relation between the 
representations of the 32 crystalline classes or point 
groups and the so-called 90 magnetic classes. 

Tables 1, 2 and 3 reproduce the well known character 
tables of the representations of the point groups 
222 (Dz), 2/m (Czn) and 23 (T) respectively, the first 
line in each table being the identity representation. The 
second line in Table 1 contains the representation 
labelled Bx in which the numbers 1, - 1, - 1,1 represent 
the symmetry operations E, 2x, 2u and 2z respectively. 
We want to establish a one-to-one correspondence 
with a magnetic class, i.e. a correspondence of B1 with 
the identity representation of the magnetic point group. 
The recipe is simple: 2x and 2u have the characters 
- 1  in B~ so that in order to get the character + 1 we 
have only to replace 2x and 2v by the antielements 2~ 
and 2~. Thus B1 is associated with the magnetic class 
2'2'2. 

Table 1. Point group DE 
Here A, B1, B2, B3 are used for 222 because any one of the 

twofold axes can be considered the principal one. 
222 E 2z 2v 2z 
A 1 1 1 1 
B1 1 - 1  - 1  1 
B2 1 - 1  1 --1 
B3 1 1 --1 --1 

Table 2. Point group:C2n 
2/m E 2z mz i 
Ag 1 1 1 1 
Ba 1 --1 --1 1 
Au 1 1 --1 --1 
Bu 1 - 1  1 --1 

Table 3. Point group T 
23 E 2~ 3 32 
A 1 1 1 1 

1 1 co ooz E 
1 1 co 2 co 

T 3 - 1  0 0 
where 09 = exp (27ff/3). 

With each one-dimensional real representation of a 
space (point) group we can associate a magnetic space 
(point) group by keeping the same elements when the 
character is + 1 and changing them to antielements 
when the character is - 1. 

The B2 and B3 representations of Table 1 are not 
distinct from B~ in the abstract sense because the three 
can transform into each other by a simple interchange 
of axes, or expressed otherwise, B2 and B3 would give 
rise to the magnetic classes 2'22' and 22'2' which are 
just other settings of 2'2'2. 

In Table 2 of 2/m we encounter formally the same 
four representations as in 222, but here they are all 

'distinct' in the abstract sense and will give rise to four 
distinct magnetic classes 

Aa--+2/m; Ba-+2'/m'; Au-+2/m'; Bu---~2'/m. (2-2) 
Finally in the cubic (tetrahedral) point group 23, there 
is only one one-dimensional real representation, the 
trivial identity representation Aa-+23. 

By counting in the same way the number of distinct 
one-dimensional representations in the 32 crystal clas- 
ses one arrives exactly at the 90 magnetic classes" the 
original 32 classes plus the additional 58 classes [see 
table in Hammermesh (1962)]. 

Magnetic space groups 

As a first example for space groups, consider Pbam 
(D9h) where we choose as generators two screw axes 
21, x in x¼0 and 21, u in ¼y0 and a centre of symmetry 
1 in 000. There are 8 one-dimensional representations, 
associated with the wave-vector k = 0 ,  and listed in 
Table 4 with just the characters of the generating ele- 
ments in columns 2,3,4. In columns 5,6,7 are listed 
the elements and antielements which correspond re- 
spectively to characters + 1 and - 1  on the same line. 
Finally the last column summarizes the magnetic 
groups with the use of the following rules" 

2~,x. T = b ;  21,y. T = a ;  21,x. 21,v. T=m=2~,x • 2],y. i 
• - - ,  , • t ,  21,x • 1=21 ,2 .  1 = b  ; 21, v . T=21,v .  T ' = a ,  

21,x. 21,v. i=21, . 21, . T=21, . 2 ,v. T'=m'. (2-3) 

Table 4. Representations and magnetic groups 
in Pbam (k = 0) 

Characters of Elements and 
Representations the generators antielements 

21x 21v T 
F1 1 1 1 2x 2u T 
/'2 1 - 1  1 2z 2u' T 
F3 --1 1 1 22" 2v T 
F4 - 1  - 1  1 2z' 2v" i 
F5 1 1 - 1 2z 2v I '  
/'6 1 - 1  - 1  2x 2u' I '  
/ ' 7  - -  1 1 --  1 22' 2v ~' 
F8 --1 --1 --1 2x' 2y' I '  

Magnetic 
groups 

Pbam 
Pba'm" 
Pb" am" 
Pb'a'm 
Pb" a'm" 
Pb" am 
Pba" m 
Pbam" 

The eight magnetic groups listed in Table 4 are not 
all distinct: Pba'm' and Pb'am' can be transformed into 
each other by an interchange of the x and y axes (as 
well as the corresponding representations/ '2 and/ '3) .  
This is also true for Pb'am and Pba'm so that we have 
constructed six abstract magnetic groups (including 
Pbam). To exhaust the space group Pbam we must first 
determine which k vectors in the first Brillouin zone 
have the full point symmetry Go and finally among the 
corresponding group representations we must consider 
those which are real and one-dimensional. In ortho- 
rhombic groups the k vectors to be considered are 
½bl, ½b2, ½b3, ½(b2Wb3), ½(b3Wbl), ½(bl+b2) and 
½(bl + b2 + b3) where the bl ( j  = 1,2, 3) are the reciprocal 
vectors of the lattice vectors aj in direct space. It can 
be shown (see § 5 and Appendix 1) that only for 
k=½b3 are there 8 one-dimensional real representa- 
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tions, identical with the preceding ones. (The repre- 
sentations are still one-dimensional for )(b~ +b2) and 
for ½(h~ + h2 + h3) but complex and two-dimensional for 
all the other vectors). 

The meaning of the propagation vector k=½b3 is 
that the phase factor exp 2n ik .  t associated with the 
translation t becomes - 1  for t=a3,  i.e. the magnetic 
cell is doubled in the z direction or a3 = e' is an 'anti- 
translation' accompanied by spin reversal. Here too 
some of the 8 magnetic groups obtained can be trans- 
formed into each other by changes of origin or dif- 
ferent settings, and one is finally left with 3 different 
magnetic groups P2cbam,  P2cb 'am and P2cb 'a 'm  where 
2c denotes the new periodicity along the e direction. 

Finally we have associated with P b a m  a family of 
9 magnetic groups (including P b a m ) .  

As a second example more fully studied in §§ 4 and 5 
we consider the very frequently encountered space 
group P n m a  (DI~) or in another setting, P b n m .  Here 
one finds by the same procedure 8 different magnetic 
groups associated with the vector k = 0  (cf. Table 5 
and 6) and no others. Those associated with the afore- 
mentioned k vectors are all two-dimensional with the 
exception of k=½(bl+b2) where the representation is 
one-dimensional but complex. 

Table 5. C h a r a c t e r  tab le  f o r  P b n m  ( k  = O) 

( a n d  p o i n t  g r o u p  m m m  D2h) 
e 2z 2v 2~ i 2~,T 2ui 2~i 

F I  = Flg  1 1 1 1 1 1 1 1 
1-'2 = F2g  1 1 -- 1 - 1 1 1 - 1 - 1 
1-'3 = F 3g 1 - 1 1 - 1 1 - 1 1 - 1 
F 4  = F4g  1 - 1 - 1 1 1 - 1 - 1 1 
F s = F I ~  1 1 1 1 --1 --1 --1 --1 
1"6 = F 2 u  1 1 - 1 - 1 - 1 - 1 1 1 
F 7  = ]"3u 1 - 1 1 - 1 - 1 1 - 1 1 
Fs  = F4u 1 - 1 - 1 1 - 1 1 1 - 1 

The reader may convince himself that we have found 
exactly the same magnetic groups associated with P b a m  
and P b n m  as other authors have found by very dif- 
ferent procedures. 

Finally we have shown that one may associate a 
magnetic group with each one-dimensional represen- 
tation of characters + 1 of a classical space group. 

Conversely, starting from a magnetic space group, 
we get a one-dimensional representation of the iso- 

morphous space group by putting characters of ele- 
ments equal to + 1 and those of antielements equal 
to - 1. 

We might summarize our discussion by saying that 
the 'invariant magnetic structures' described by mag- 
netic groups correspond to real one-dimensional repre- 
sentations of the 230 space groups. It is from now on 
evident that representation theory is richer because it 
can deal not only with magnetic structures belonging 
to one-dimensional real representations of space groups 
(and invariant under magnetic groups) but also with 
those which belong to one-dimensional complex repre- 
sentations, and even to two-dimensional and three- 
dimensional representations. 

3. General theory 

Let Cg be a symmetry operation of a crystallographic 
space group G. Operate with Cg on a spin component 
S i ~ = S j .  Here c~ stands for x , y , z  and i numbers the 
symmetry-equivalent points ( i=  1 , . . . ,  n) so that the 
index j varies from 1 to 3n. The spin vectors are con- 
sidered as axial vectors. We write then 

C g S j =  Z D ( C g ) ~ j .  S~  . (3-1) 
k 

Here the matrix D ( C g )  is the transpose* of the trans- 
formation matrix of the spins (see examples in §§ 4 
and 5). The matrices D ( C g )  form a representation F 
of the space group G. F of dimension 3n is generally 
reducible. 

Our first step will be the construction of the trans- 
formation matrices and of their transposes. The second 
step will be the reduction of F which is synonymous 
with finding out the irreducible representations and its 
base vectors. If character tables of the irreducible re- 
presentations F ~v) of G are available it is easy to recog- 
nize from the well known orthogonality relations be- 
tween characters (3-2) how many times a ~° the repre- 
sentation F ~) is contained in F. Here the Z r ( C g )  are 
the traces of the transformation matrices. 

If the irreducible representations F (° of G are ex- 
plicitly known the techniques of projection operators 

* For the reason for taking not the transformation matrices 
themselves but their transposes, see Heine (1960). 

Table 6. T r a n s f o r m a t i o n  p r o p e r t i e s  in space  g r o u p  P b n m  (cf .  T a b l e  12) 

Generators 
Representation 21,x 21,u T 

FI=Flg + + + 
F2=F2g + - -  + 

F 3 = F 3 g  -- + + 
F4 = F4g -- _ + 
F s =  FI,* + + - 
F 6 = r 2 u  + - - 
F 7  = F 3 u  - -  + - -  

F 8  = F 4 u  - -  - -  - -  

Transition 
element in Rare earth 
4(a) or 4(b) in 4(c) 

x y z x y z Magnetic group 
A G C C Pbnm or Pnma 
F C G "F "C Pbn'm" Pn'm'a  
C F A C F Pb'nm" Pnm'a" 
G A F "F Pb'n 'm Pn'ma" 

"G "A Pb" n" m" Pn" m" a" 
• "A Pb'nm Pnma" 

G Pbn'm Pn'ma 
• "A G Pbnm" Pnm'a  
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(3-3) applied to a spin component or a suitable linear 
combination of spin components 7 ~ will 'project out' 
those linear combinations ~tj which form the basis of 
irreducible representations. 

a(V)=g -1 X Zr(ca)X(v)*(Ca) (3-2) 
c~ 

~ ) =  X D~)(Cg). Ca~ t.  (3-3) 
Cg 

Here the summations are over all the g symmetry 
operations of the group. D(v)(Ca) is the matrix repre- 
sentative of Ca in the representation F (v) and D~)(Ca) 
is a matrix element. It is often sufficient to consider 
successively the spin components S~x, Sw and S~z for 

in order to find a convenient set of ~u~j which are 
'partners of vectors belonging to the representation 
/'(v),. 

If the representations F (o are unknown, they may 
be constructed for instance by the algebraic method 
of Olbrychski (1963), and combined with the transfor- 
mation properties they will yield the basis functions 
with the use of (3-3). 

It is also possible to reduce directly the matrices 
D(Ca) of F and to find simultaneously the basic vectors 
and the irreducible representations. 

All these methods, briefly indicated here, will be ex- 
amplified in the next two sections. 

Once the basis of irreducible representations is 
known, it is easy to construct bilinear combinations 
of the base vectors which are invariants and represent 
the magnetic couplings allowed in the group G (§ 6). 

4. Representations and base functions for k = 0  

We consider first the case where magnetic and chemical 
cells are identical. The wave vector associated with the 
magnetic structure is k = 0 and has the full point group 
symmetry Go (Go contains all the rotational or dyadic 
parts of G but without the translational components). 
Our first example will be the centrosymmetric and 
orthorhombic space group Pbnm (D~). The underlying 
point group Go=D2n has the 8 symmetry elements 
e, 2x, 2y, 2z =2x2u, T, T'2z, T'2 u and 2z'T which are all 

• 3(~) 
4(0) 

- ~ y  

2 .1 1 - ~  1,ra~-~Y 

x 21,xatX¼0 

Fig. 1. Point transformation of the 4(a) positions in Pbnm, 
k=0.21 ,z turns l to4 ,2 to3e tc . ;21 ,u turns l  to 3 ,2 to4  
etc. The number in parenthesis is the z coordinate. 

binary and commute. The 8 one-dimensional represen- 
tations of Dan are listed in Table 5. 

As generators of the group Pbnm one may take of 
course the Hermann-Mauguin symbols b,n,m them- 
selves. Instead it is easier to consider as generators the 
two screw axes, 21,x at x¼0 and 21,y at ¼Y¼ and the 
symmetry centre T at 000. Let us place spins $1 ( j =  
1,2,3,4) into the fourfold sites 4(a) 000 (1); 00~ (2); 

11  ~ (3), 2-~z0 (4). These 4 points are (equivalent) centres 
of symmetry. 

The drawing of Fig. 1 allows us to write the following 
equations of transformation for the spin components 
of spin $1. 

21, xSlx = S4x ;-21, ySlx = - S3x; 21, zSlx = - S2x 
2 x , z S w = - S 4 y ;  21, uS ly  = S3y; 21,zS1u = -Say  
21 ,xS l z=-S4z ;  21 ,ySlz=-S3~;  21,zSlz= S2z (4-1) 

The operation T does not change any spin vector, 
which means that only the representations Fta ( j =  
1,2, 3, 4) of Table 6 are involved in the above mentioned 
4-point problem (the indices g and u stand for 'gerade" 
= even and 'ungerade' = odd). 

We are now prepared to apply the projection oper- 
ator relation (3-3) to, say, ~u= Six. All the representa- 
tions being one-dimensional we drop the indices/j and 
obtain 

~(~) = zcV)(e)Slx + z(v)( 2z)2zSxx 

+X(v)(2u)2ySxx+X(v)(2z)2zSlz. (4-2) 

7t~ ) will be a base vector which transforms according 
to F (v). 

We obtain in this way the vectors: 

Ax  = Six  - S2x - S3x ÷ S4x belonging to F w 
Fx = S~x + S2x + S3x + S4x 1-'2g 
C x :  S ix  ÷ S2x - S3x - S4x 1"3g 
G x = S x x - S 2 x ÷ S 3 x - S 4 x  /"4g. (4-3) 

What is their physical meaning? A vector like Fx 
reaches a maximum value for Six = S2x = S3x = S4x and 
is zero for any antiferromagnetic sign combination. It 
characterizes a ferromagnetic + + + + configuration. 
In the same way the G vector is maximized by the 
spin arrangement $1 = -  $2 = $3 = - $ 4  and is zero for 
every other antiferromagnetic or ferromagnetic sign 
combination. Thus it characterizes the G mode or a 
+ -  + -  spin configuration. In the same way the A 
and C vectors characterize respectively + - -  + and 
+ + - - configurations. 

The reader may complete the first part of Table 6 
for the y and z components of the base vectors. Note 
that no 'ferromagnetic' component belongs to the iden- 
tity representation. 

It is easily checked that the same vector components 
are obtained with spins placed in the four equivalent 
symmetry centres in 4(b) 

½00 (1); ½0½ (2); 0z~ (3); 0½0 (4). 

The linear spin combinations F, G, C, A could have 
been guessed intuitively. The reader should verify that 
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their components effectively belong to the indicated 
representations. For instance with the help of (4-1) and 
Fig. 1 one finds 

21, ~Gx = - Gx; 21, uGx = - Gx; TGx = Gx, (4-4) 

so that, from the characters - 1, - 1, + 1 of the respec- 
tive generators 21, ~, 21, u and T, Gx belongs to F4g ac- 
cording to Table 5. 

As a second example we consider the positions 4(c) in 

xy¼ (1); ~p~- (2); ½+ x, lz -Y,aT (3)•, ½-x,½+Y,¼ (4) 

The transformation properties for spin Sl are given 
by: 

21, xSl~ = $3~; 2x, uSw = S4u; 21, zSlz: 82~; 

TSx = Sz; 21, ~. TSI:~: S4x; 21, u • T S l y :  S3y; 

2a,z. TSlz = Sxz, (4-5) 

and obvious relations for the missing components• 
Here the T operation transforms Sa into Sz so that the 
Fin representations will be relevant• Application of re- 
lation (3-3) to Slz and Sw in the representation/ '7 =/-'3u 
yields 

}['t(xrT)= S l x -  S3x + ( -  S4x ) 

- ( - $2:~) - S2x -t- S4x - ( -  $3:~) -at- ( - Sla~) = 0 (4-6) 

and similarly ~rT) = 0 .  

This indicates that there is no x,y  vector transform- 
ing according to / '7 .  However for the z component we 
get 

~r/(zF7) : S l z  - ( - -  S3z  ) -~ ( - S4z  ) - ( -  S2z)  - (S2z)  + ( -  S4z)  

+ Slz = 2($1 - Sz + $3 - S4)z = 2Gz, (4-7) 

so that 'Gz belongs to FT'. In the same way one con- 
structs the whole of  Table 6. 

Transformation matrices 
Finally let us show how to use the transformation ma- 

trices of the spin vectors.Table 7 summarizes the transfor- 
mation properties of the points 4(c) numbered 1,2, 3, 4. 
The parenthesis following these numbers indicates the 
lattice translations (see also Fig. 2) which we disregard 
for the moment.  We write the transformation proper- 
ties not only for the spin S1 but for all the spins. For 
instance 

21, ~Sx. = S3z; 21, .S2z = S4z; 

21 ,zS3x=&.;  21 ,x&z=S2.  (4-8) 

and similar equations for the y and z components. 
Relation (4-8) may be written in the matrix-form Esix  E / s3 / w i t h  0c= 

S 4 . .  & . .  

" ' 1 "  1 
• . . 1 

1 . . . , ( 4 - 9 )  

• 1 • • 

where dots are written for zeros• 
The complete transformation matrix (21, ~) of order 

12 may be written 
x y z 

(21, x) = . -c~ . (4-10) 

In the same way one obtains 

x y z 

= 

and 

['1 . 

• . 

- p  [ i 1 with fl= i i (4-11) 

i " .  

I 
' l ' '  

1 . . . (4-12) with y =  . . . 1 " 

• . 1 . 

One constructs the eight transformation matrices by 
appropriate multiplications of the 'generating' ma- 
trices (21,~), (2x,u) and (1-). 

For  instance [ _ 

(m)=(21,a.  T)=(21,x)(21,u)(]')= [ - 5  . 
5 

with I 1  i " " 1 "  (4-13) 
6 =  ~]~y= . 1 " 

• 1 

The traces of these eight matrices are zero except for 

z(e)=12 and Z ( 2 z . T ) = - 4  (4..14) 

Table 7. Point transformation in Pbnm. Sites 4(e) 

xy¼ (1); 255 (2); ½+x, ½-y, ~ (3); ½-x, ½+y, ¼ (4), 21,x at x, ¼, 0; 21,u at ¼, y, ¼; T at 0, 0, 0. 
Operations e 21, z 21, u 21, x21, u T 2 1 ,  x • T 2x, u • T 21, ~21, u • T 

1 3 4 2 ( 1 0 0 )  2 4 3 1 ( 10T) )  

2 4 3 (001) 1 (10T) 1 3 4 2 (100) 
3 1 (100) 2 (011) 4 (0"IT) 4 (T]'0) 2 (010) 1 (100) 3 (100) 
4 2 (100) 1 (010) 3 (0T0) 3 (Ti0) 1 (010) 2 (101) 4 (10T) 

21,z transforms point 1 to 3, 2 to 4, 3 to 1 plus a translation 1, 0, 0 and 4 to 2 plus a translation 1, 0, 0. 
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Reduction 
The application of (3-2) indicates 

a<V)=½[ 1 2 - 4  .Z<V)r2~ 1,z. T)] (4-15) 

so that the representations F~,F4,F6,F7 are contained 
once (z<v)(21, z. T)= + 1) and the representations F2, F3, 
Fs, F8 twice (z<V)(21,z. T ) = - I ) .  This exactly corre- 
sponds to the findings of Table 6. 

The eight transformation matrices 'represent the 
space group' and form a representation F of order 12 
which may be reduced• A first reduction into 3 sub- 
spaces of order 4, corresponding to the x, y and z 
components is obvious. It is also easy to see that all 
the fourfold matrices of a subspace may be simultane- 
ously reduced to diagonal form by the matrix ~ (4-16) 
the columns of which correspond precisely to the F, G, 
C and A vectors• 

F G C A Ill 11 1 --1  1 - -1  = ~ - 1  (4-16)  
4 = ½  1 1 - 1 - 1  " 

1 - 1  - 1  1 

For instance for the subspace x one finds 

~ - a e ~  = 1 . 
• . - 1  ' 

~-,(-#)~= I - 1  . . 1 
1 . 

1 ; 
• , - - 1  [1] 

~_17~= - 1 . . (4-17) 
1 

- 1  

so that in the respective operations 21x, 21u and 1 from 
(4-16) and (4-17) 

.2(-¼) • 2"(+-~) 

Q1 l(w) 

3 

• 4(¼) 

(-~) * 3'(¼) 
i ~ y 

• 21,yat~y~ 

1'({) 

Fx has the characters 1, 1,1 and belongs to / '2  
Gx 1,1,1 /'6 
Cx 1,1,1 1"3 
Ax 1,1,1 /'8 

(see Table 5). 
Other examples of matrix representations are found 

in the next section• 
At this point we may already note connexions with 

the Shubnikov groups and some of their difficulties. 
Consider the example of ErFeO3 (Koehler, Wollan 

& Wilkinson, 1960) or ErCrO3 (Bertaut & Mar6schal, 
1967a). At low temperatures the spin components of 
Fe (or Cr) belong to a G mode with x and y com- 
ponents and those of Er to a C mode along Oz. Ac- 
tually Gz (Fe, Cr) belongs to F4 whereas Gu (Fe, Cr) 
and Cz (Er) belong to F1 so that different magnetic 
groups be involved, say Pb'n'm and Pbnm (see last 
column of Table 6). The 'global magnetic symmetry' 
would be the intersection of these two magnetic groups, 
say the monoclinic group P21/m. 

Another example is TbFeO3 (Bertaut, Chappert, 
Mar6schal, Rebouillat & Sivardi~re, 1967) where one 
finds at 1.5°K the Fe-spins in a Gx mode belonging 
to /'4 or Pb'n'm and the Tb-spins in a non-collinear 
AxGu arrangement belonging to/-'8 or Pbnm'. Here the 
two magnetic groups have the intersection P2~2~21. 

In the two cases we see that it is possible to indicate 
a 'global Shubnikov group' which is of lower symmetry 
than the Shubnikov groups associated with the repre- 
sentations of the individual ions. 

We may say that the interactions between different 
ions will have the symmetry of the global Shubnikov 
group• However there is no reason to believe that inter- 
actions between ions of the same nature would not 
have the higher symmetry associated with their repre- 
sentations. To be explicit, the Tb-Tb interactions in 
TbFeO3 may have the symmetry Pbnm', the Fe-Fe 
interactions would belong to the symmetry Pb'n'm and 
only Fe-Tb interactions (if any) would have the lower 
symmetry P 2~2~21. 

We must conclude that the concept of global mag- 
netic symmetry invariance has not the same strength 
as the concept of say positional invariance of a crystal 
under the operations of its space group. 

From the point of view of representation theory 
there is, however, no conceptual difficulty in admitting 
that in the same crystallographic space group there 
might be spin components belonging to different re- 
presentations. The physical reasons will become more 
apparent in § 6. We should like to point out the sim- 
ilarity with the problem of cryptosymmetry discussed 
by Niggli & Wondratschek (1960) and Wondratschek 
& Niggli (1961)• 

x 21.xatX¼0 

Fig.2. Point transformation of the 4(c) positions in Pbnm, 
k=[0½0l. 2x,y in ¼y¼ turns 1 to 4, 2 to 3', 3 to 2' and 4 to 1'. 
The number in parenthesis is the z coordinate• 

5. Representat ions  and base funct ions  for k =# 0 

The division of this section roughly follows the needs 
of the projection operator method, which are the 

A C 24A - 15 
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knowledge of irreducible space group representations 
and of the properties of transformation of spin vectors, 
both associated with the wave vector k. The first part, 
recalling essential notions and including the Olbrychski 
(1963) method will be quite abstract. The second part 
dealing with the transformation properties is easy again 
and has been extended to show that the basis functions 
obtainable by the projection operator method may also 
be gained from the transformation properties them- 
selves. 

Any symmetry operator C~ of a space group G may 
be written in the form (5-1) where c~ is a (proper or 
improper) rotation and % its translational part. The 
multiplication law is (5-2). 

C,,-- {~1%} • (5-1) 

C=Cp = {~l~=}{/~l~p} = (~/~l~p + ~=} • (5-2) 

The wave vector k numbers the representations of 
the subgroup T of primitive translations Rn 

:D°'~){elRn}=exp(2rtik. Rn). 1 (~) • (5-3) 

Here 1 (~) is the unit matrix in the representation num- 
bered v. 

The wave-vector groups G k and their representations 
are defined as follows. The set of all rotational ele- 
ments which leave the vector k invariant is a group 
noted Go k which is identical with one of the 32 point 
groups. Let ~(~)(fl) be a representation of the point 
group Go k numbered by the index v. (For instance there 
are eight representations v = 1 , . . . ,  8 when Go k =mmm 
(see Table 5). Then the representations of the wave- 
vector group G k are given by 

~tu~)({fl [~p })= exp(2~ik. ~p)~(~)(fl), (5-4) 

with some restrictions however. Formula (5-4) holds 
at the interior of the first Brillouin zone for all groups. 
At the surface it still holds for the symmorphic space 
groups, i.e. those in which ~p is a lattice translation. 

In the 157 non-symmorphic space groups relation 
(5-4) does not hold in general. (For instance, for the 
DJ2h groups one would expect, from relation (5-4) and 
Table 5, to find only one-dimensional representations. 
This is no longer true on the surface of the first Bril- 
louin zone). 

Remark: We do not deal more specifically with rela- 
tion (5-4) except for the simplest case when G k has no 
element except the identity e which may happen for 
an incommensurable wave vector k. The oscillating 
spin [in chromium (Shirane & Takei, 1962)] 

S(Rn) = S0x cos(2r&. Rn + ~0) (5-5) 

and the helical spin [in dysprosium (Wilkinson, Koeh- 
ler, Wollan & Cable, 1961)] 

S(Rn) = S0[x cos(2z&. Rn + ~0) 
+ y sin(2~zk. Rn + fp)] (5-6) 

appear to be vectors belonging to particularly simple 
representations of the vector k. 

The Olbrychski method 

In this method one chooses first a convenient set of 
generators of the group. In a second step one forms 
the complete set of relations between the generators 
which induce relations between their matrix represen- 
tatives. Finally one looks for the explicit form of these 
matrices which yield the desired irreducible represen- 
tations. 

We illustrate the method by applying it to the space 
groups DJ2h and more particularly to two examples 
Pbam (D9h) and Pbnm (DI, 6) when the k vectors have 
the full point symmetry of Go, say mmm. 

One may take as generators the Hermann-Mauguin 
symbols themselves. However, other choices are as well 
suited. We select here the binary screw axes 21, ~ and 
21,v and the symmetry centre T taken at the origin. 
We write 

21, .= {2.Ix.}; 21,y= {2ylxy}; T= {I10}, (5-7) 

where 2x,2y are binary axes and I is the inversion, 
which may be represented by matrices of order 3. The 
translations x,,xy must be specified for each space 
group DJ2h (see Appendix 1). 

In the underlying point group Go k = Go, the six de- 
fining relations between the generators 2,, 2u and I are 

2 - 2y = 12 = e; 2x2u = 2v2z; 2zI= I2x .  (5-8) 

One finds correspondingly 

22x = {eltl} with tl =(2 ,+e)~z  

22y = {elt2} with t2=(2y+e)zy 

(T)2 = {el0} 

21,z. T = {elty3} T. 21,z with t13 = 2~, 

21,y . T = {elt23} T. 21,u with t23=2~y 

21, x. 2y = {elt12} 21,y . 21, x with t12 = (2z-e)~y 
- ( 2 y - e ) x , .  (5-9) 

The last equation of (5-9) is derived in Appendix 1 
with the values of the translations t in groups Pbam 
and Pbnm. 

Let us call As, ,42 and A3 the matrix representations 
of 21,,, 21,u and T respectively and remember that the 
representative of the translation t in the space group 
representation associated with the wave-vector k is 
1. exp 2zcik. t, where 1 is a unit matrix. The relations 
(5-9) become 

A~ = 87 • 1; A~Aj = AjA~eij; i , j= 1,2, 3 | 

I with 

8j = exp(2zcik, t~); e~j. = exp(2nik, tij). 

(5-10) 

One has in Pbnm (see Appendix 1) 

81 = exp[2rCikl]; 8 2 = exp[2rcik2]; 8 3 = 1 

812 = exp[27ri (k~ - k 2 -  k3)]; 813 = exp[2~zi (kl + k2)] 

823 = exp[2ni (kl + k2 + k3)]. (5-11) 
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Here the kj ( j  = 1,2, 3) are the components  of  the wave- 
vector k 

k = klbl + k2b2 q- k3b3 • (5-12) 

It  is worth while to tabulate the phase factors ej and 
eje for those k vectors which are associated with the 
full point  group symmetry  (see Table 8). It is seen that  
only for k = 0  and k = ½ ( b l  q-b2) the matrices Aj ( j =  
1,2,3) commute  (all e~j positive) so that  their repre- 
sentations are one-dimensional real for k = 0  (e¢= + 1) 
and complex for k = ½  (bl+b2).  Their derivation is of  
course trivial. 

We shall derive here the irreducible representations 
belonging to the wave-vector k=½b2 for which the 
equations (5-10) read 

A ~ A j = - A j A ~  for i , j = l , 2 , 3 ( i # j ) .  (5-13) 

Because in (5-13) there are ant i -commuting matrices, 
there cannot  be any one-dimensional representation. 
There cannot  be any three-dimensional representation, 
because 3 2 = 9 exceeds the order 8 of the group. Finally 
we are left with two two-dimensional representations 
because g = 8 = 2 2 + 2 2. Their  explicit form, given by the 
simple identification procedure of  Appendix 2, is tab- 
ulated in Table 9. 

Transformation properties for  k = ½b2 in Pbnm (D~ 6) 

The t ransformat ion properties of  the points 4(c) can 
be simply gained from geometrical inspection. We read 

from Fig.2 that  the screw axis 21,y sends point  1 to 
4, point  2 to 3' ( = 3  plus a t ranslat ion a3), point  3 to 
point  2' ( =  2 plus a t ranslat ion aa + a3) and point  4 to 
point  1' ( =  1 plus translat ion a2). Keeping in mind that  
spin reversal takes place after a translat ion a2 one has 
the following relations for the spin vectors 

21,ySly = S4y; 21,yS2y = S3y; 

21,yS3y=S2~, = - S 2 y ;  21,yS4y=Sly = - S l y .  (5-14) 

In the way described above one derives the transfor- 
mat ion properties for points already summarized in 
Table 7 and for the spin vectors given in Table 10. 

To use relation (3-3) it is convenient to consider for 
the following linear spin combinations* 

~-l+=½(Six.-~ S2x); ~[-I-=½(Slx-S2x ) . ( 5 - 1 5 )  

With the help of the matrices of the representation 
Fe~ (Table 9) and the t ransformat ion properties of the 
x components  (Table 10) one finds from ~u+: 

~ + = F z ;  ~ + = - F x  

~ + = - C . ;  ~ + = C z  (5-16) 

and from gJ-: 
gJii = Gx; g J ~ = G x  

gJii = A x ;  gJ~i= Ax.  (5-17) 

* One might take as well ~,= Slz for instance. The func- 
tions obtained in this way are, however, less symmetrical. 

Table 8. Phase factors cj and e~j in Pbnm 

Order of Nature 
irreducible and 

k el e2 e3 822 ~23 e31 representations number 
0 1 1 1 1 1 1 1 Real 8 
½bl - 1 1 1 - 1 - 1 - 1 2 R e a l  2 
½b2 1 - 1 1 - 1 - 1 -- 1 2 Real 2 
½b3 1 1 1 - 1 - 1 1 2 Real 2 
½(b2 +b3) 1 - 1 1 1 1 - 1 2 Complex 2 
½(b3 + bl) - 1 1 1 1 1 - 1 2 Real 2 
~(bx + b2) - 1 - 1 1 1 1 1 1 Complex 8 
½(b1+b2 + b3) - 1  --1 1 - 1  - 1  1 2 Complex 2 

Table 9. Irreducible representations o f  Pbnm. Wave-vector k = [030] 

FI~ e A1 A2 AIA2 A3 A1A3 AzA3 A~AzA3 

[1. i ]  [ 1 . - i ]  [ - - i  1.1 [ i  1.] [ - - i - - 1 . ]  [i-1.] [-1. i] [ -1 .  i ]  

Ab A2 and A3 are the representatives of 2~,z, 21,u and I. F2g is obtained by reversing the sign of A3. 

Table 10. Spin transformations in Pbnm. Sites 4(e). k =  [030]. x components 

e 21 , z  21,v  21,z T 2 1 , z .  T 21,u • T 2 1 , z .  T 

& ~ $ 3 .  - $4~ - $2~ $2 $ 4 ~  - $3~: - $ I  
S2x S4x - S3x - S l x  Sl S3x - S4x - S2x 
S3x Slx S2x S4x - S4 - S2x - Six - S3x 
S4x S2x Six S3x - S3 - Six - S2x - S4x, 

A C 24A - 15" 
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According to § 3 the functions ~ij with j fixed are 
'partners belonging to t he j t h  row'. The physical mean- 
ing of the fact that Gx and Ax for instance are 'partners'  
in the two-dimensional representation Fel is that they 
provide an equivalent description of the same physical 
reality• This fact is illustrated in Fig. 3. By applying 
also projection operators to the functions ½(Slu + S2u) 
and ½(Saz + S2z) one arrives at the results of Table 11. 
It is found that all the x and y vectors belong to Fel, 
the z vectors to Fez. 

Table 11. Partners o f  irreducible representations 

1"1~1 1"I¢2 
~01 Fz Gz Cu Au Cz Az 
~oz -- C= Az -- Fv Gu Fz - Gz 

The transformation matrices for k = [0~z0] 
The transformation matrices (21, z), (21,u) and (1-) may 

be written in the same forms as in (4-10), (4-11), (4-12) 
with: 

E I [ '11 " " 1 i ; f l=  - 1 .  " " 

i i  " -1  

[1 1 1 . ( 5 - 1 8 )  
Y= . - 1  " 

- 1  

Note that the tI:anspose of fl is - f t .  From (3-1) it fol- 
lows that the transposes of (21, x), (21,u) and (1), say 
A f,  A r and A r,  generate a 12-dimensional representa- 
tion F which is reducible• Of course, as the reader may 
check, these matrices follow exactly the multiplication 
rules reached by the Olbrychski method in (5-10) and 
in (5-13) so that the irreducible representations Fkl and 
Fk2 could have been found by the same identification 
procedure as in Appendix 2. 

The only non-zero traces are 

zr(e)= 12 ; Zr(AxAzA3)= - 4 ,  (5-19) 

so that from (5-20) the representations f'el and F~2 

a(kO=½(2.12-2.  ( - 4 ) = 4  

a(k~= ~(24-  8) = 2 (5-20) 

are contained respectively 4 and 2 times in f'. This is 
exactly the number of couples of partners in Table 11 
for the respective representations. 

The direct reduction method 
This method is based on the explicit form of the 

transformation relations. For instance by simply add- 
ing the equations (5-14) one gets 

21,y(S1 -b $2 q- $3 + S 4 ) u  = 

21,uFu = ($4 + $3 - $2 - S1)u = - Cv 

and similarly 

2x,u(S1 + $2 - $3 - $4) = 

21,uCu= Fu= - ( -  Fu) . (5-21) 

Relations (5-21) suggest already that Cv and --Fy are 
partners in a two-dimensional representation• One finds 
in the same way 

21,zCy= Cu ; TCu= - ( - F v )  

2x , z ( -  Fu)= - ( - F u ) ;  - f ( -  Fu) = - Cu . (5-22) 

Thus we have derived in a very simple way the three 
following transformation matrices in the two-dimen- 
sional space of the vectors Cu and - F v :  

[1 ] 1] 
(21,z)= . 1 ;(21'v)= 

• - - 1  

Their transposes are exactly the matrices A1, A2 and 
A3 of the representation F~I so that Cy and - F y  are 
partners in that representation. One can find in the 
same way the representation Fkz as well as all the other 
basis functions. 

Remark: If  one had taken Cu and + Fy as partners 
one would have got another set of matrices for A1, A2 
and A 3 corresponding to one of the equivalent forms 
shown in Appendix 2. 

Generalization o f  the matrix method 
The matrix-method is easily generalized to any k 

vector• For  instance when 2u is an element of G~ (i.e. 
an operation which leaves k invariant, which is only 
true for 2k1=0 or l, 2k3=0 or 1), the transformation 
matrix (21,u) has the form 

I2  

i 
1 

31 

i 
3' 

4P . . . .  ~ Y,Y" 

Z I4 I ' I 1" 
I I 
I I 
I ~2 '  I 
I I 

I 
i . . . . . .  -I 

X" 

Fig. 3. Equivalence of the Ax and Gx configuration in Pbnm, 
k = [0½0]. The spins 1,2, 3, 4 form a + - + - or G~ sequence. 
The spins 1', 2' and 3' are displaced by aa, al +a2 and - a l  
with respect to 1, 2 and 3. Take a new origin at 0½0 and call 
the coordinates of point 4: x',y',¼. In the new (primed) 
coordinate system, our four-point sequence becomes 4,3", 
2',1' with spins - +  + - .  This is an Ax sequence which 
describes the spin configuration as well. 
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with 

(21,u) = ] 
[ 1 1  fl = exp[2zH(k2 + k3)] exp(2rcik3)"  (5-24) 

exp(2a:ik2) 

where the phase factors 'represent' the translations 
written in parenthesis after the transformed points of 
Table 9. The matrices which one gets after transposi- 
tion play exactly the role of the Olbrychski matrices. 
One has for instance 

( A r ) 2 = e x p ( 2 r c i k z ) .  1 (5-25) 

in conformity with (5-10). 

E x a m p l e s  

Examples of structures with k vectors on the Bril- 
louin-zone are already found in the literature. 

The spin configuration of Tb in TbCrO3 (Bertaut, 
Mar4schal & de Vries, 1967) is an example of a struc- 
ture belonging to a two-dimensional irreducible repre- 
sentation of P b n m  associated with the wave-vector 
k =  [0½0]. Tb has an A x G  u configuration (see Table 12). 

The spin configuration of Dy in DyCrO3 (Bertaut & 
Mar6schal ,1967b) belongs to a complex one-dimen- 
sional irreducible representation of P b n m  associated 
with the wave-vector k = [½½0]. 

Let us now mention here an additional difficulty of 
Shubnikov groups. In the two preceding examples the 
rare-earth ordering requires enlargement of the unit 
cell in at least one direction whereas the Cr-spins re- 
tain the periodicity of the chemical cell. In TbCrO3 
for instance, the Tb-spin configuration would belong 
to a magnetic Pzb group whereas the Cr configuration 
remains in a simple P group. 

Another example is the magnetic structure of V- 
spins in VzCaO4 (Bertaut & Nhung, 1967) belonging 
to a two-dimensional representation of P b n m  with k = 
[½0½]. It is interesting to note that the same structure 
has been solved by Hastings, Corliss, Kunnmann & 
La Placa (1967) in monoclinic Shubnikov groups. 

Finally the magnetic structure of the Mn atoms in 
RMn205 (R-- rare  earth or yttrium or bismuth) has 
been solved by the direct reduction method applied to 
the space group P b a m  with k = [½0½] (Bertaut, Buisson, 
Qu6zel-Ambrunaz & Qu6zel, 1967). 

6 .  E f f e c t i v e  s p i n  H a m i l t o n i a n  a n d  

m a g n e t i c  c o u p l i n g s  

We consider purely magnetic interactions (i.e. inter- 
actions which are not coupled with other forms of 
energy - elastic, electric, and so on; see also § 7). Let 
us require that the effective spin Hamiltonian is invari- 
ant under the 'actual' crystallographic space group a n d  

under the reversal of al l  the spins. The physical founda- 
tion of this last requirement is that the magnetic energy 
of a single domain does not change (neglecting bound- 
aries) by spin reversal and that nature always shows 
the coexistence of A domains and reversed B ( = - A )  
domains. 

The spin Hamiltonian must have the form: 

H =  27 A , p ( R , R ' ) & ( R ) S p ( R ' )  
R,R',~,fl 

(~,#=x,y,z) -b H 4 +  H 6 +  . . . (6-1) 

Here S,(R) is the a-component of a spin S localized 
in point R. A,B(R, R') is a 3 x 3 matrix which represents 
a tensor of order two. By Ha and H6 we indicate the 
possible existence of terms of order 4 and 6 in the spins. 

It is then a very trivial matter to see that if a Hamil- 
tonian of the form (6-1) is invariant under an operation 
Cg of the crystallographic space group G, it is also 
invariant under the operation C;, = C k R  of the iso- 
morphous magnetic space group G' and v ice  versa  be- 
cause R n =  + 1 for n even. Thus H will be invariant 
under G and G'. 

The construction o fa  Hamiltonian of form (6-1) may 
be quite cumbersome and it is advantageous to intro- 
duce, instead of the spins, the basis vectors of irre- 
ducible representations which are linear combinations 
of the spins. Indeed the linear system of the basis vec- 
tors may be resolved with respect to the spins*. In the 
approximation of a spin Hamiltonian of order two, 

* For instance in the system (4-3) of the basis vectors A, 
F, C and G one has 4Sx=F+C+G+A and so on. 

Table 12. R e p r e s e n t a t i o n s  o f  a x i a l  v e c t o r s  a n d  p o l a r  v e c t o r s  in P n m a '  

Pnma [ S i t e s  4 (c ) ]  
^ 

Generators 
Representation 21,z 21,z i" 

F1 = F1 g + + + 
F2=F2g + -- + 
F3 = F3g -- + + 
F4=F4g - - -  + 

1-'5 = Flu  + + -- 
F6=F2u  + -- __ 
FT=F3u -- + - -  

F8 = F4u - -  _ _ 

Axial vectors 
x y z 

C 
k 
C F 

A G 

A 

Generators 
21,z 21,z 

+ + 
+ - 
- + 

+ + 
+ - 
- + 

Pnma" [Sites 4(c)] Pnma [Sites 4(c)l 

Axial vectors Polar vectors 
I x y z x y z 
+ A A G 
+ b 
+ A G A 
+ b b 
- -  C F C 
- b 
- -  C C F 
- k b k 
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one will get, after substitution, a quadratic form of the 
base vectors. The advantage of the new quadratic form 
is that one can only have products of basis vectors 
belonging to the same irreducible representation. This 
is due to the group theorem that only the direct pro- 
duct of an irreducible representation with itselft con- 
tains the identity representation and thus gives rise to 
invariants. 

F jx  F~ contains F0 (identity representation). (6-2) 

Physically one may explain in this way most of the 
so called 'canted' spin structures. For instance the oc- 
currence of the non-zero product azzFzGz in the spin 
Hamiltonian of group Pbnm (k=0)  means that a 
+ -I- -t- + sequence in the x direction is coupled with a 
+ -  + -  sequence of spins in the z direction. This is 
for instance the case in YFeO3 where a 'weak' ferro- 
magnetism Fx is seen magnetically (Bozorth, Williams 
& Walsh, 1956) whereas neutron diffraction mainly:]: 
observes a Gz configuration. Another example in the 
same space group Pbnm is the structure of fl-CoSO4 
(Bertaut, Coing-Boyat & Delapalme, 1963) where 
Ax, Gu, Cz are seen to coexist (cf Table 6 in F1). 

Remark: It is interesting to note in this context that 
one has to deal here with a 'phase problem'. Indeed 
in the last case, the observed magnetic lines are A or 
G or C lines (with no interferences) so that in fact one 
observes A2x,G~,C~. Thus the spin models are not 
unique and to the proposed solution Az, Gu, Cz (Ber- 
taut et al., 1963) one must add three other possible 
solutions giving rise to exactly the same interference 
pattern, say - Az, + Gu, + Cz; + Az, - Gu, + Cz; + Az, 
+ G u, - Cz (Bertaut, 1966). 

Several conclusions may be reached concerning the 
number of irreducible representations and the order 
of the Hamiltonian. 

Case of  one magnetic species of equivalent atoms 
We have seen that a Hamiltonian of order two im- 

plies that the spin components must belong to the 
same irreducible representation. Conversely one may 
often conclude that if the spin components belong to 
the same irreducible representation, the approximation 
of a spin Hamiltonian of order two is sufficient. If the 
spin components S <~) and S (p) belong to different i r  
reducible representations F (~) and F (~), the spin Ham- 
iltonian must have terms of order four at least. 
Another consequence is that S (~) must be orthogonal 
to S(P). 

Indeed if 
S - ~ ( ~ ) ±  ~ ( B )  R - -  ~ R  ~ ~ R  (6-3) 

one must have 

S~= S~)2 + S ~ "  + 2S~ ) • S~)=invar ian t .  (6-4) 

S~ ) . S ~  ) transforms according to the direct product 

t If F~ is complex, one must take Fy x Fj*. 
:1: The weak ferromagnetic component is here about one 

per cent of the antiferromagnetic one and can be evidenced 
with the help of polarized neutrons. 

F (') × F (a) (which does not contain the identity repre- 
sentation) and thus must disappear. 

An example is the occurrence of 'conical spins' in 
which the linear and the helical components belong 
to different wave vectors and are orthogonal [for exam- 
ples see Kaplan (1961), Elliott (1961) and Wilkinson 
et al. (1961)]. 

We remark finally that no spin can belong to more 
than three irreducible representations F (~), Fce), F (~) 
and that the three components S(~),S(P),S (r) must be 
orthogonal (demonstration as above). 

Case of  two magnetic species (non-equivalent atoms) 
If all the spin components belong to the same irre- 

ducible representation, we may suppose that coupling 
between the two species takes place within a Hamil- 
tonian of order two: This is exemplified by HoFeO3 
(Koehler et al., 1960) and HoCrO3 (Bertaut, Mar6schal, 
Pauthenet & Roult, 1964) where the moments of Ho 
and Fe, Cr belong to the representation F2 of Table 6. 
Er203, where one finds 24 points of symmetry 2 and 
eight points of site symmetry 3 is another example for 
such a coupling (Bertaut & Chevalier, 1966; Moon. 
Koehler, Child & Raubenheimer, 1967). 

May one have spin components belonging to differ- 
ent representations and still be satisfied with a Hamil- 
tonian of order two? The answer is yes. An interesting 
example is ErCrO3 (Bertaut & Mar6schal, 1967a) where 
above 16.8°K the Cr moments are in a Gz configura- 
tion which belongs to F4 (Table 6). Below 16.8 °K the 
rare earth orders in a Cz configuration which belongs 
to FI. At the same time the Cr moments rotate in the 
Oxy plane so that one is left with a Gx (Cr) component 
in /-'4 and a new Gy (Cr) component in /'1, coupled 
with the rare earth. 

If the spin components of each species belong to 
different representations, this may be interpreted as 
decoupling or coupling through a lower symmetry. An 
example is the spin structure of TbFeO3 (Bertaut, 
Chappert, Mar~schal, Rebouillat & Sivardi~re, 1967; 
cf. § 4). 

Finally if the spin configurations of the two species 
belong to different k vectors as in DyCrO3 (Bertaut & 
Mar6schal, 1967b) one may assume complete decoup- 
ling (of order two) and (or) the presence of higher 
order terms (H4, H6). 

Nature of the coupling 
The tensor A,p(R,R') of (5-1) may be decomposed 

into a symmetrical and an antisymmetrical part (Ber- 
taut, 1961, 1963). The latter one corresponds to the so- 
called Dzialoshinski-Moriya (Dzialoshinski, 1958; 
Moriya, 1960) vector DRR' and gives rise to an energy 
term of the form DRR,  . (S R × S R ,  ) .  The symmetric 
part may again be split into two parts. The first one 
is a scalar and gives rise to the so called Heisenberg- 
N6el energy (Heisenberg, 1928; N6el, 1948), denoted 
by - -2JRR.S R . SR', which represents a scalar or iso- 
tropic coupling. The second part is a traceless sym- 
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metric tensor of order two, often written in diadic form 
~RR' and giving rise to the anisotropy energy SR. 
~RR'.  SR'. R and R' may here coincide. The physical 
origins of ~RR" are dipolar, pseudodipolar and crystal- 
line field interactions, aCRR, is called the exchange 
integral,  DRR" is proportional to 2JRR' ,  and (I)RR' to 
22 where 2 is the spin orbit coupling constant. 

On the other hand group theory enables us to deter- 
mine basis vectors, to construct invariants by product 
formation, and finally, expressing the basis vectors in 
terms of spins, to construct the spin Hamiltonian (5-1) 
which informs us about the nature of the couplings. 

We illustrate this point by t h e  example of CoO 
which in its magnetic ordering undergoes a tetragonal* 
deformation. Admitting that the 42 screw axis is con- 
served in the transition, there are two vectors V1 and 
V2 in the x,y plane which belong to the same irreducible 
representation associated with k = [ ~ ] .  

VI = &z, + Szu- $3 . -  S4u (6-5) 

V2 = Sw - S z . -  Sw + $4.. 

V~, V~ as well as a(V~ + V~) are invariants. One has 

a(V~ + V~)= 

a[ ~ S 2 -'}- 2z.  (sl x S 2 "l- S2 X S 3 + S 3 X S 4 -I- S4 M Sl)  

- 2(sx . $3 @ $2. $4)]. (6-6) 

Here z is the unit vector in the z direction and small 
letters are used to denote the spin components in the 
Oxy plane [for the complete spin Hamiltonian see 
Bertaut (1967)]. (6-6) shows that strong Dzialoshinski- 
Moriya coupling may occur and that a(V~+ V~) is, 
minimized for a negative, sl antiparallel to s3,s2 anti- 
parallel to s4, but s~ orthogonal to s2, s2 orthogonal 
to s3 and so on. 2az plays the role of the Dzialoshinski- 
Moriya vector and is mainly responible for the tetra- 
gonal spin structure, recently proposed by van Laar 
(1965) and strongly supported by the large spin-orbit 
coupling observed in CoO. 

Advantage of representation theory 
Finally the advantage of representation theory over 

symmetry invariance (under the Shubnikov groups) is 
also reflected by the construction of the Hamiltonian 
itself. In the example of DyCrO3 the Dy-spin configura- 
tion belongs to a one-dimensional complex representa- 
tion of the space group Pbnm (D~ 6) associated with the 
wave-vector k =  [~0].  The Hamiltonian H(Dy) will be 
invariant under the whole set of the symmetry opera- 
tors. On the other hand, the Dy-spin structure cannot 
be described in any Shubnikov group belonging to the 
Pbnm family so that we must lower the symmetry to a, 
say, monoclinic Shubnikov-group. As a consequence 

* MnO, FeO, NiO deform rhombohedrically at the N6el point. 

this will impose less stringent conditions on the coef- 
ficients in the Hamiltonian. 

7.  M a g n e t o e l e e t r i c i t y  

The reader may get the impression that the author is 
hostile to the use of magnetic groups. In fact the author 
is only defending representation theory. The main ob- 
jection of the reader might be that in the abstract sense 
magnetic and space groups are isomorphous* so that 
a structure belonging to a representation of a space 
group G (even when the representation is not one- 
dimensional real) also belongs to a representation of 
the isomorphous Shubnikov group G'. This is perfectly 
correct, but still means that we would abandon sym- 
metry invariance in favour of representation theory. 

Can we ignore magnetic groups entirely? The answer 
is no, not only in microscopic, say atomic systemst 
(Dimmock & Wheeler, 196:2) but also macroscopically 
when a magnetic system is coupled with other forms 
of energy. 

A specific example is magnetoelectricity.:~ Here the 
Hamiltonian expressed in the fields contains not only 
the even powers of magnetic and electric field com- 
ponents, but also bilinear invariant terms like hm~hep 
where a and fl specify directions. Actually the magnetic 
field variable hm~ is sensitive to time reversal whereas 
the electric field hep (polar vector) is not. We require 
the invariance of such bilinear terms under a Shubnikov 
group and suppose of course that the magnetic group 
may be described by such a group. Instead of the field 
description we choose, as in the preceding sections, the 
moment description with a bilinear term of the form 
Fm~Fep in the Hamiltonian. Fm and Fe denote magnetic 
and electric polarizations (=sums  of moments). This 
is done in the following steps. First one constructs the 
table of axial§ basis vectors belonging to the irreducible 
representations of the space group G. From the know- 
ledge of the magnetic structure one is able to indicate 
which elements have become anti-elements and to con- 
struct a new table of representations for axial vectors 
in the magnetic space group G'. Finally we construct 
the table of irreducible representations of polar§ basis 
vectors, which are representative of the electric moment 
structure. 

As an example we have chosen LiCoPO4 (Mercier, 
Gareyte & Bertaut, 1967) belonging to the space group 
Pnma with four Co atoms in positions x¼z; 2¼~; 
½ -  x, ¼, ½ + z; ½ + x, ¼, ½ -  z and numbered correspond- 
ingly. As generators we choose 21, z in x¼¼, 21, z in ¼0z 
and 1 in 000. The first part of Table 12 correspond~ 

* macrospically speaking with R2 = 1. 
I" where R is an operator of order 4 (Wigner, 1959). 
:[: In a magnetoelectric compound an electric field provokes 

ordering of the magnetic domains and a magnetic field gives 
rise to an electric polarization [see Rado& Folen (1962) and 
literature cited there]. 

§ The language is improper. By axial or polar basis vector 
we mean a vector which is a linear combination of axial or 
polar vectors respectively. 
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to the representation of axial vectors in Pnma (with 
the notation of § 4). The spin structure (Santoro, Segal 
& Newnham, 1966) is described by Au and belongs to 
the representation Fv=F3u, from which we can infer 
that the generators of the magnetic group (see the 
prescription of§ 2) are 2~, x, 21, z and T' and consequently 
that the magnetic group is Pnma'. In order to get the 
representations of Pnma' we multiply the characters of 
the Pnma table (in columns 2, 3, 4) by - ,  + ,  - respec- 
tively and reorder the representations accordingly. This 
is done in the central part of Table 12. 

Finally in the third part we add the representations 
of polar vectors. Axial and polar vectors behave in 
the same way under 21, z and 21, z. Only the ]" operation 
has different effects so that a Fg representation for axial 
vectors will become a Fu representation for polar vec- 
tors and vice versa. From comparing the axial vector 
representations in Pnma' and the polar vector repre- 
sentations in Pnma of the last 6 columns of Table 12 
we read the existence of two invariants of the form 
FrauFex(F6) and FmzFeu(Fs) which are effectively ob- 
served (Mercier et al., 1967).* Note that none of the 
vectors Fm, or Fe~ belongs to the identity representa- 
tion. Thus we have to do with an effect of 'induced' 
magnetoelectricity. (In the magnetoelectric FeGaO3 
(Rado, 1964) one finds an invariant FmzFeu (Bertaut, 
Bassi, Buisson, Chappert, Delapalme, Pauthenet, 
Rebouillat & A16onard, 1966) with Fmz and Feu be- 
longing to the identity representation.) 

We are grateful to Professor David P. Shoemaker for 
many improvements of style and presentation and to 
Professor Louis N6el for unfailing encouragement. 

Appendix 1 

The last relation of (5-9) is obtained by comparing: 

and 
21,z. 21,u={2z. 2ul2z%+'cz} 

2a,u. 21,x= {2x. 2ul2uxz+xy }, (AI-1) 

expressions in which the second members only differ 
by the translation labelled h2. 

The explicit forms of the matrices (2x), (2y) and (]) 
being [1 ] 
(2~)= . - 1  ; (2u)= 

- 1  

_l ] 
1 

- 1  

[_1 1 (i) = - 1 
- 1  

(A1-2) 

one has 

* The  group table given in this reference is a con t rac ted  
version of  Table  12: no distinction is made  between Fg and  
F,, representat ions.  

"] I '  (2z+e)=  ; ( 2 x - e ) =  2 

• - - 2  

(A1-3) 

In Pbnm one has for the binary screw axis applied 
to the point xyz" 21, x(x,y, z) = x 2 + x ,½-y ,5  from which 

z--lz, 12,,,n and similarly xy = ~22 x . (A 1-4) 
One finds 

ta = (2z + e)¢z = 1,0, 0; t2 = (2y + e)¢y = 0 ,1 ,0  

t12=1,1,1; tx3= 1,1,0; t23=1,1,1 . (A1-5) 

To save space we have written row vectors instead of 
column vectors in (A 1-4) and (A 1-5). 

In Pbam one finds 

and 
--ll 0 

h =  1,0,0; t2=0,  1,0; t12= 1,T,0; 

113 : t23 = 1,1,0.  (A 1-6) 

Appendix 2 
Determination of irreducible representations 

To determine explicit forms, let us take At diagonal 
and write A2 and A3 as follows, 

C( 

Substitution in the six relations (5-13) yields iden- 
tities which reduce the matrices to 

with/z z = b 2 = 1. If we restrict ourselves to real values 
of fl, one may take for fl,/z and b any one of the eight 
sign combinations _+ 1 which give rise to the eight re- 
presentations of the following table 

/t + + -- -- + + -- -- 

/~ + - + - + - + - 

b + + + + . . . .  

r i  F ;  F ;  F4 F~ r~ F ;  r ~ .  

The two labelled Fg~ and /"/C2 correspond to the 
choices of signs/z = f l =  - b  = I(F~) a n d / z = f l = b =  1 (F~). 

All the other sign combinations are either equivalent 
to Fkl or to /-'k2. 

r l -  r ; -  r~ - r~ - re ,  

El =. r ~ -  F ;  :--- r~ - r , ~ .  
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