Representation Analysis of Magnetic Structures

By E.F.Bertaut
Laboratoire d'Électrostatique et de Physique du Métal,C.N.R.S., B.P. 319 et Laboratoire de Diffraction Neutronique, C.E.N.G., B.P. 269, Grenoble 38, France

(Received 20 July 1967)

In the analysis of spin structures a 'natural' point of view looks for the set of symmetry operations which leave the magnetic structure invariant and has led to the development of magnetic or Shubnikov groups. A second point of view presented here simply asks for the transformation properties of a magnetic structure under the classical symmetry operations of the 230 conventional space groups and allows one to assign irreducible representations of the actual space group to all known magnetic structures. The superiority of representation theory over symmetry invariance under Shubnikov groups is already demonstrated by the fact proven here that the only invariant magnetic structures describable by magnetic groups belong to real one-dimensional representations of the 230 space groups. Representation theory on the other hand is richer because the number of representations is infinite, i.e. it can deal not only with magnetic structures belonging to one-dimensional real representations, but also with those belonging to one-dimensional complex and even to two-dimensional and three-dimensional representations associated with any \mathbf{k} vector in or on the first Brillouin zone.

We generate from the transformation matrices of the spins a representation Γ of the space group which is reducible. We find the basis vectors of the irreducible representations contained in Γ.
The basis vectors are linear combinations of the spins and describe the structure. The method is first applied to the $\mathbf{k}=0$ case where magnetic and chemical cells are identical and then extended to the case where magnetic and chemical cells are different $(\mathbf{k} \neq 0)$ with special emphasis on \mathbf{k} vectors lying on the surface of the first Brillouin zone in non-symmorphic space groups. As a specific example we consider several methods of finding the two-dimensional irreducible representations and its basis vectors associated with $\mathbf{k}=\frac{1}{2} \mathbf{b}_{2}=\left[0 \frac{1}{2} 0\right]$ in space group Pbnm ($D_{2 h}^{16}$.

We illustrate the physical context of representation theory by constructing an effective spin Hamiltonian H invariant under the crystallographic space group and under spin reversal. H is even in the spins and automatically invariant under the (isomorphous) magnetic group. We show by the example of CoO that the invariants in H, formed with the help of basis vectors, give information on the nature of spin coupling as for instance isotropic (Heisenberg-Néel) coupling, vectorial (Dzialoshinski-Moriya) and anisotropic symmetric couplings.

Magnetic structures, cited in the text to show the implications of the representation theory of space groups are $\mathrm{ErFeO}_{3}, \mathrm{ErCrO}_{3}, \mathrm{TbFeO}_{3}, \mathrm{TbCrO}_{3}, \mathrm{DyCrO}_{3}, \mathrm{YFeO}_{3}, \mathrm{~V}_{2} \mathrm{CaO}_{4}, \beta-\mathrm{CoSO}_{4}, \mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{CoO}$ and $\mathrm{RMn}_{2} \mathrm{O}_{5}(\mathrm{R}=\mathrm{Bi}, \mathrm{Y}$ or rare earth).

Representation theory of magnetic groups must be considered when the Hamiltonian contains terms which are odd in the spins. The case may occur when the magnetic energy is coupled with other forms of energy as for instance in the field of magneto-electricity. Here again representation theory correctly predicts the couplings between magnetic and electric polarizations as shown on LiCoPO_{4} and (previously) on FeGaO_{3}.

1. Introduction

We develop here a method characterized as 'macroscopic' which is able to predict all possible magnetic couplings in the frame of the known 230 crystallographic space groups.

When we state that 'a crystal has a space group' we evoke the concept of invariance of atomic positions under the symmetry operations of the space group. In the same way one was naturally led to associate with a magnetic structure new sets of symmetry elements, the so-called magnetic or Shubnikov groups, which should describe the invariance of magnetic structures. We say 'should' because today there are many instances where known magnetic structures are not invariant under any Shubnikov groups.

In opposition to the (widely accepted) view of symmetry invariance under the Shubnikov groups we develop in $\S 2$ a new point of view which investigates the transformation properties of magnetic structures under the operations of the 'trivial' 230 space groups. Moreover this new point of view will prove to be more general. We show indeed that all the magnetic groups can be generated from the knowledge of the ensemble of one-dimensional real representations of the 230 space groups; in other words the 'magnetic' groups can only describe those magnetic structures which belong to onedimensional representations, having characters +1 or -1 , of the classical space groups.
The general theory is outlined in $\S 3$. It uses representation theory, the main problem being to find irreducible representations and the basis functions which
belong to them and which are able to describe the magnetic structures, their transformation properties and even the magnetic couplings.

Although this sounds very abstract, the application is easy and is illustrated in $\S 4$ by the simple case where chemical and magnetic cells are identical. Such structures are associated with a wave vector $\mathbf{k}=0$. Specific examples will show the advantage of the method and some of the difficulties already faced by Shubnikov groups with these structures.

In $\S 5$ we extend the application of the method to any \mathbf{k} vector in the first Brillouin zone (i.e. to any magnetic, even non-commensurable cell) with special emphasis on \mathbf{k} vectors lying at the surface of the Brillouin zone in non-symmorphic space groups. Two methods are used: an algebraic one due to Olbrychski which finds the irreducible representations, and a more geometrical one which, starting from the transformation matrices, provides the irreducible representations and the basis functions. As an illustration of two-dimensional irreducible representations we consider more fully the wave vector $\mathbf{k}=\left[0_{2}^{1} 0\right]$ in space group Pbnm. We also indicate examples of structures $\left(\mathrm{TbCrO}_{3}\right.$, $\mathrm{DyCrO}_{3}, \mathrm{~V}_{2} \mathrm{CaO}_{4}, \mathrm{RMn}_{2} \mathrm{O}_{5}$) belonging to \mathbf{k} vectors on the Brillouin zone and solved by the methods of $\S 5$.
We examine in $\S 4$ the physical context of representation theory. A basic role is played by the 'effective macroscopic spin Hamiltonian' which gives rise to the magnetic structure. We study the implications of the postulate that the 'effective spin Hamiltonian' is an even function of the spins and find that the time reversal operator is not needed for the analysis of magnetic structures. Conclusions are reached, concerning the coupling and decoupling of magnetic atoms in the approximation of a Hamiltonian of order two. The influence of higher order terms is also examined. From the knowledge of the basis vectors and the known magnetic structure one can not only construct a spin Hamiltonian, but also may infer the existence of the various microscopic couplings known as HeisenbergNéel coupling, Dzialoshinski-Moriya coupling, crystalfield and dipolar or tensor coupling of spins. As a specific example we have chosen the magnetic structure of CoO as proposed by van Laar (1965).
As long as the time reversal operator R is defined by $R^{2}=1$, magnetic groups are strictly isomorphous with the classical groups and thus have the same irreducible representations. From $\S \$ 1$ to 6 the reader might conclude that magnetic groups may be disregarded. This is however untrue. Magnetic group theory must be considered when in the energy expression magnetic and non-magnetic terms are coupled in such a way that the spins or magnetic moments occur in odd powers. As a particular case we investigate in § 7 magnetoelectricity which can be described as originating from a coupling, bilinear in a magnetic and an electric polarization. Here again group theory is useful and predicts in all known instances the spatial relation between electric and magnetic polarization.

2. Symmetry invariance and representation theory

At first sight it seems natural to consider as far as the symmetry of a spin configuration is concerned all those symmetry operations which leave the spin structure invariant. Historically one has introduced new (primed) symmetry operations C_{k}^{\prime}, the so-called 'antielements' which are the product of the conventional (unprimed) symmetry elements C_{k} with the time- (or current-) reversal operator R of order two.

$$
\begin{equation*}
C_{k}^{\prime}=C_{k} R=R C_{k} ; R^{2}=1 . \tag{2-1}
\end{equation*}
$$

These new symmetry elements considerably enlarge the number of possible groups. The 32 crystalline classes grow to 90 classes and the 230 space groups increase to 1651 'magnetic groups'. Good accounts may be found in the following references: Belov, Neronova \& Smirnova (1957), Donnay, Corliss, Donnay, Elliott \& Hastings (1958), Opechowski \& Guccione (1965).
From the point of view of representation theory it is equivalent to say that 'a crystal structure has a space group G ' or that it 'transforms according to the identity representation of space group G, i.e. each symmetry operation of G may be represented by +1 and thus leaves the crystal invariant. In the same way, when a magnetic structure may be described by a Shubnikov group G^{\prime} it belongs to the identity representation of that group G^{\prime}. Although such a statement might appear as obvious as a 'vérité de La Palice'* it is of a very essential nature because it contains all the shortcomings of the use of magnetic groups in the analysis of magnetic structures.
Indeed the Shubnikov groups already meet with difficulties in the case of helical structures where 'colour' groups of order infinity would be needed.

Other difficulties arise as we shall see in $\S 4$ for canted spin structures when different spin components may belong to different representations and also when spin structures belong to two- or three-dimensional irreducible representations.
An entirely different point of view asks the following question: How does a given spin configuration transform under 'classical' symmetry operations C_{k} of the space group G in which the crystal is embedded? It is then always possible to characterize the transformation properties of a spin structure by indicating the irreducible representations of the space group G according to which the spin components transform. There remains naturally the problem of how complete such a description might be. It is easy to show that we get at least from representation theory the same information which the magnetic groups are supposed to give.

Abstractly this may be stated as follows: 'The number of magnetic groups is equal to the number of onedimensional space-group representations which are distinct in the abstract sense and have real characters +1

* La Palice (1470-1525) is synonymous with evident statements. He was reported to have been 'still living a quarter of an hour before his death'.
or -1 '. Two representations are said to be 'distinct in the abstract sense' if they cannot be transformed into each other by another setting (changes of axes and origins).

Magnetic classes

As a first example, consider the relation between the representations of the 32 crystalline classes or point groups and the so-called 90 magnetic classes.

Tables 1, 2 and 3 reproduce the well known character tables of the representations of the point groups $222\left(D_{2}\right), 2 / m\left(C_{2 h}\right)$ and $23(T)$ respectively, the first line in each table being the identity representation. The second line in Table 1 contains the representation labelled B_{1} in which the numbers $1,-1,-1,1$ represent the symmetry operations $E, 2 x, 2_{y}$ and 2_{z} respectively. We want to establish a one-to-one correspondence with a magnetic class, i.e. a correspondence of B_{1} with the identity representation of the magnetic point group. The recipe is simple: 2_{x} and 2_{y} have the characters -1 in B_{1} so that in order to get the character +1 we have only to replace 2_{x} and 2_{y} by the antielements 2_{x}^{\prime} and 2_{y}^{\prime}. Thus B_{1} is associated with the magnetic class $2^{\prime} 2^{\prime} 2$.

Table 1. Point group D_{2}
Here A, B_{1}, B_{2}, B_{3} are used for 222 because any one of the twofold axes can be considered the principal one.

222	E	$2 x$	$2{ }_{y}$	2
A	1	1	1	1
B_{1}	1	-1	-1	1
B_{2}	1	-1	1	1
B_{3}	1	1	-1	-1
	Table 2. Point group ${ }_{4} C_{2 h}$			
2/m	E	22	m_{z}	$\overline{1}$
A_{g}	1	1	1	1
B_{g}	1	-1	-1	1
A_{u}	1	1	-1	-1
B_{u}	1	-1	1	-1
	Table 3. Point group T			
23	E	$2 z$	3	32
A	1	1	1	1
E	,	1	ω	ω^{2}
		1	ω^{2}	ω
T	3	-1	0	0

With each one-dimensional real representation of a space (point) group we can associate a magnetic space (point) group by keeping the same elements when the character is +1 and changing them to antielements when the character is -1 .

The B_{2} and B_{3} representations of Table 1 are not distinct from B_{1} in the abstract sense because the three can transform into each other by a simple interchange of axes, or expressed otherwise, B_{2} and B_{3} would give rise to the magnetic classes $2^{\prime} 22^{\prime}$ and $22^{\prime} 2^{\prime}$ which are just other settings of $2^{\prime} 2^{\prime} 2$.

In Table 2 of $2 / m$ we encounter formally the same four representations as in 222, but here they are all
'distinct' in the abstract sense and will give rise to four distinct magnetic classes

$$
A_{g} \rightarrow 2 / m ; B_{g} \rightarrow 2^{\prime} / m^{\prime} ; A_{u} \rightarrow 2 / m^{\prime} ; B_{u} \rightarrow 2^{\prime} / m \text {. (2-2) }
$$

Finally in the cubic (tetrahedral) point group 23, there is only one one-dimensional real representation, the trivial identity representation $A_{g} \rightarrow 23$.
By counting in the same way the number of distinct one-dimensional representations in the 32 crystal classes one arrives exactly at the 90 magnetic classes: the original 32 classes plus the additional 58 classes [see table in Hammermesh (1962)].

Magnetic space groups

As a first example for space groups, consider Pbam ($D_{2 h}^{9}$) where we choose as generators two screw axes $2_{1, x}$ in $x \frac{1}{4} 0$ and $2_{1, y}$ in $\frac{1}{4} y 0$ and a centre of symmetry \bar{I} in 000 . There are 8 one-dimensional representations, associated with the wave-vector $\mathbf{k}=0$, and listed in Table 4 with just the characters of the generating elements in columns $2,3,4$. In columns $5,6,7$ are listed the elements and antielements which correspond respectively to characters +1 and -1 on the same line. Finally the last column summarizes the magnetic groups with the use of the following rules:

$$
\begin{align*}
& 2_{1, x} \cdot \overline{\mathrm{I}}=b ; 2_{1, y} \cdot \overline{\mathrm{I}}=a ; 2_{1, x} \cdot 2_{1, y} \cdot \overline{\mathrm{I}}=m=2_{1, x}^{\prime} \cdot 2_{1, y}^{\prime} \cdot \overline{\mathrm{I}} \\
& 2_{1, x}^{\prime} \cdot \overline{\mathrm{I}}=2_{1, x} \cdot \overline{\mathrm{I}}^{\prime}=b^{\prime} ; 2_{1, y}^{\prime} \cdot \overline{\mathrm{I}}=2_{1, y} \cdot \bar{I}^{\prime}=a^{\prime} ; \\
& 2_{1, x}^{\prime} \cdot 2_{1, y} \cdot \overline{\mathrm{I}}=2_{1, x}, 2_{1, y}^{\prime} \cdot \overline{\mathrm{I}}=2_{1, x} \cdot 2_{1, y} \cdot \overline{\mathrm{I}}^{\prime}=m^{\prime} .(2-3) \tag{2-3}
\end{align*}
$$

Table 4. Representations and magnetic groups in $\operatorname{Pbam}(\mathbf{k}=0)$

Representations	Characters of the generators			Elements and antielements	Magnetic groups
	$2{ }_{1}$ x	$2{ }_{1 y}$	I		
Γ_{1}	1	1	1	$2 x \quad 2{ }_{2}$ I	Pbam
Γ_{2}	,	-1	1	$22^{2}-2{ }^{\prime}$ I	$P b a^{\prime} m^{\prime}$
$\Gamma 3$	-1	1	1	$2 x^{\prime} 2_{y}$ 1	$P b^{\prime} a^{\prime}$
Γ_{4}	-1	-1	1	$2 x^{\prime} 2^{\prime} y^{\prime}$ T	$P b^{\prime} a^{\prime} m$
$\Gamma 5$	1	1	-1	$2{ }^{2} \quad 2 y \mathrm{I}^{\prime}$	$P b^{\prime} a^{\prime} m^{\prime}$
$\Gamma 6$	1	-1	-1	$\begin{array}{lll}2 x & 2^{\prime} \\ \text {, }\end{array}$	Pb'am
Γ_{7}	-1	1	-1	$2 x^{\prime} 2^{\prime} y^{\prime}$ 1'	Pba'm
Γ_{8}	-1	-1	-1	$2 x^{\prime} 2 y^{\prime}$ T'	Pbam ${ }^{\prime}$

The eight magnetic groups listed in Table 4 are not all distinct: $P b a^{\prime} m^{\prime}$ and $P b^{\prime} a m^{\prime}$ can be transformed into each other by an interchange of the x and y axes (as well as the corresponding representations Γ_{2} and Γ_{3}). This is also true for $P b^{\prime} a m$ and $P b a^{\prime} m$ so that we have constructed six abstract magnetic groups (including Pbam). To exhaust the space group Pbam we must first determine which \mathbf{k} vectors in the first Brillouin zone have the full point symmetry G_{0} and finally among the corresponding group representations we must consider those which are real and one-dimensional. In orthorhombic groups the \mathbf{k} vectors to be considered are $\frac{1}{2} \mathbf{b}_{1}, \frac{1}{2} \mathbf{b}_{2}, \frac{1}{2} \mathbf{b}_{3}, \frac{1}{2}\left(\mathbf{b}_{2}+\mathbf{b}_{3}\right), \frac{1}{2}\left(\mathbf{b}_{3}+\mathbf{b}_{1}\right), \frac{1}{2}\left(\mathbf{b}_{1}+\mathbf{b}_{2}\right)$ and $\frac{1}{2}\left(\mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{3}\right)$ where the $\mathbf{b}_{j}(j=1,2,3)$ are the reciprocal vectors of the lattice vectors \mathbf{a}_{j} in direct space. It can be shown (see $\S 5$ and Appendix 1) that only for $\mathbf{k}=\frac{1}{2} \mathbf{b}_{3}$ are there 8 one-dimensional real representa-
tions, identical with the preceding ones. (The representations are still one-dimensional for $\frac{1}{2}\left(\mathbf{b}_{1}+\mathbf{b}_{2}\right)$ and for $\frac{1}{2}\left(\mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{3}\right)$ but complex and two-dimensional for all the other vectors).

The meaning of the propagation vector $\mathbf{k}=\frac{1}{2} \mathbf{b}_{3}$ is that the phase factor $\exp 2 \pi i \mathbf{k} . \mathrm{t}$ associated with the translation \mathbf{t} becomes -1 for $\mathbf{t}=\mathbf{a}_{3}$, i.e. the magnetic cell is doubled in the z direction or $\mathbf{a}_{3}=\mathbf{c}^{\prime}$ is an 'antitranslation' accompanied by spin reversal. Here too some of the 8 magnetic groups obtained can be transformed into each other by changes of origin or different settings, and one is finally left with 3 different magnetic groups $P_{2 c} b a m, P_{2 c} b^{\prime} a m$ and $P_{2 c} b^{\prime} a^{\prime} m$ where $2 c$ denotes the new periodicity along the \mathbf{c} direction.

Finally we have associated with Pbam a family of 9 magnetic groups (including Pbam).

As a second example more fully studied in $\S \S 4$ and 5 we consider the very frequently encountered space group Pnma ($D_{2 h}^{16}$) or in another setting, Pbnm. Here one finds by the same procedure 8 different magnetic groups associated with the vector $\mathbf{k}=0$ (cf. Table 5 and 6) and no others. Those associated with the aforementioned \mathbf{k} vectors are all two-dimensional with the exception of $\mathbf{k}=\frac{1}{2}\left(\mathbf{b}_{1}+\mathbf{b}_{2}\right)$ where the representation is one-dimensional but complex.

Table 5. Character table for Pbnm $(\mathbf{k}=0)$ (and point group mmm $D_{2 h}$)

	e	2_{x}	2_{y}	2_{z}		$2_{x} \top$	$2_{y} \overline{1}$	$2_{z} \top$
$\Gamma_{1}=\Gamma_{1 g}$	1	1	1	1	1	1	1	1
$\Gamma_{2}=\Gamma_{2 g}$	1	1	-1	-1	1	1	-1	-1
$\Gamma_{3}=\Gamma_{3 g}$	1	-1	1	-1	1	-1	1	-1
$\Gamma_{4}=\Gamma_{4 g}$	1	-1	-1	1	1	-1	-1	1
$\Gamma_{5}=\Gamma_{1 u}$	1	1	1	1	-1	-1	-1	-1
$\Gamma_{6}=\Gamma_{2 u}$	1	1	-1	-1	-1	-1	1	1
$\Gamma_{7}=\Gamma_{3 u}$	1	-1	1	-1	-1	1	-1	1
$\Gamma_{8}=\Gamma_{4 u}$	1	-1	-1	1	-1	1	1	-1

The reader may convince himself that we have found exactly the same magnetic groups associated with Pbam and Pbnm as other authors have found by very different procedures.
Finally we have shown that one may associate a magnetic group with each one-dimensional representation of characters ± 1 of a classical space group.
Conversely, starting from a magnetic space group, we get a one-dimensional representation of the iso-
morphous space group by putting characters of elements equal to +1 and those of antielements equal to -1 .

We might summarize our discussion by saying that the 'invariant magnetic structures' described by magnetic groups correspond to real one-dimensional representations of the 230 space groups. It is from now on evident that representation theory is richer because it can deal not only with magnetic structures belonging to one-dimensional real representations of space groups (and invariant under magnetic groups) but also with those which belong to one-dimensional complex representations, and even to two-dimensional and threedimensional representations.

3. General theory

Let C_{g} be a symmetry operation of a crystallographic space group G. Operate with C_{g} on a spin component $S_{i \alpha}=S_{j}$. Here α stands for x, y, z and i numbers the symmetry-equivalent points $(i=1, \ldots, n)$ so that the index j varies from 1 to $3 n$. The spin vectors are considered as axial vectors. We write then

$$
\begin{equation*}
C_{g} S_{j}=\sum_{k} D\left(C_{g}\right)_{k_{j}} . S_{k} . \tag{3-1}
\end{equation*}
$$

Here the matrix $D\left(C_{g}\right)$ is the transpose* of the transformation matrix of the spins (see examples in §§ 4 and 5). The matrices $D\left(C_{g}\right)$ form a representation Γ of the space group G. Γ of dimension $3 n$ is generally reducible.

Our first step will be the construction of the transformation matrices and of their transposes. The second step will be the reduction of Γ which is synonymous with finding out the irreducible representations and its base vectors. If character tables of the irreducible representations $\Gamma^{(v)}$ of G are available it is easy to recognize from the well known orthogonality relations between characters (3-2) how many times $a^{(\nu)}$ the representation $\Gamma^{(\nu)}$ is contained in Γ. Here the $\chi^{\Gamma}\left(C_{g}\right)$ are the traces of the transformation matrices.
If the irreducible representations $\Gamma^{(\nu)}$ of G are explicitly known the techniques of projection operators

* For the reason for taking not the transformation matrices themselves but their transposes, see Heine (1960).

Table 6. Transformation properties in space group Pbnm (cf. Table 12)

Representation	Generators			Transition element in 4(a) or 4(b)			Rare earth in $4(c)$			Magnetic group	
	21,x	21, ${ }^{\text {a }}$	I	x	y	z	x	y	z		
$\Gamma_{1}=\Gamma_{1 g}$	+	$+$	$+$	A	G	C			C	Pbnm or	Pnma
$\Gamma_{2}=\Gamma_{2 g}$	$+$	-	+	F	C	G	F	C	.	$P b n^{\prime} m^{\prime}$	$P^{\prime} n^{\prime} m^{\prime}$
$\Gamma_{3}=\Gamma_{3 g}$	-	+	$+$	C	F	A	C	F		$P b^{\prime} n^{\prime}$	Pnm'a'
$\Gamma_{4}=\Gamma_{4 g}$	-	-	+	G	A	F			F	$P b^{\prime} n^{\prime} m$	$P^{\prime} n^{\prime} m a^{\prime}$
$\Gamma_{5}=\Gamma_{1 u}$	+	+	-	.	.	.	G	A		$P b^{\prime} n^{\prime} m^{\prime}$	$P^{\prime} n^{\prime} m^{\prime} a^{\prime}$
$\Gamma_{6}=\Gamma_{2 u}$	+	-	-	A	Pb'nm	$P_{\text {nma }}$
$\Gamma_{7}=\Gamma_{3 u}$	-	\pm	-	-	-	-	A	G	G	${ }_{\text {Pbn'm }}$	Pn'ma Pnm'a

(3-3) applied to a spin component or a suitable linear combination of spin components Ψ will 'project out' those linear combinations $\Psi_{i j}$ which form the basis of irreducible representations.

$$
\begin{align*}
a^{(\nu)} & =g^{-1} \sum_{C_{g}} \chi^{\Gamma}\left(C_{g}\right) \chi^{(\nu) *}\left(C_{g}\right) \tag{3-2}\\
\Psi_{i j}^{(\nu)} & =\sum_{C_{g}} D_{i j}^{(\nu)}\left(C_{g}\right) \cdot C_{g} \Psi . \tag{3-3}
\end{align*}
$$

Here the summations are over all the g symmetry operations of the group. $D^{(\nu)}\left(C_{g}\right)$ is the matrix representative of C_{g} in the representation $\Gamma^{(\nu)}$ and $D_{i j}^{(\nu)}\left(C_{g}\right)$ is a matrix element. It is often sufficient to consider successively the spin components $S_{1 x}, S_{1 y}$ and $S_{1 z}$ for Ψ in order to find a convenient set of $\Psi_{i j}$ which are 'partners of vectors belonging to the representation $\Gamma^{(v)}$.

If the representations $\Gamma^{(\nu)}$ are unknown, they may be constructed for instance by the algebraic method of Olbrychski (1963), and combined with the transformation properties they will yield the basis functions with the use of (3-3).

It is also possible to reduce directly the matrices $D\left(C_{g}\right)$ of Γ and to find simultaneously the basic vectors and the irreducible representations.

All these methods, briefly indicated here, will be examplified in the next two sections.

Once the basis of irreducible representations is known, it is easy to construct bilinear combinations of the base vectors which are invariants and represent the magnetic couplings allowed in the group $G(\S 6)$.

4. Representations and base functions for $k=0$

We consider first the case where magnetic and chemical cells are identical. The wave vector associated with the magnetic structure is $\mathbf{k}=0$ and has the full point group symmetry G_{0} (G_{0} contains all the rotational or dyadic parts of G but without the translational components). Our first example will be the centrosymmetric and orthorhombic space group $\operatorname{Pbnm}\left(D_{2 h}^{16}\right)$. The underlying point group $G_{0}=D_{2 h}$ has the 8 symmetry elements $e, 2_{x}, 2_{y}, 2_{z}=2_{x} 2_{y}, \overline{1}, \bar{I} \cdot 2_{x}, \bar{I} \cdot 2_{y}$ and $2_{z} \cdot \bar{I}$ which are all

Fig. 1. Point transformation of the $4(a)$ positions in Pbnm, $\mathbf{k}=0.2_{1, x}$ turns 1 to 4,2 to 3 etc.; $2_{1, y}$ turns 1 to 3,2 to 4 $e t c$. The number in parenthesis is the z coordinate.
binary and commute. The 8 one-dimensional representations of $D_{2 h}$ are listed in Table 5.

As generators of the group Pbnm one may take of course the Hermann-Mauguin symbols b, n, m themselves. Instead it is easier to consider as generators the two screw axes, $2_{1, x}$ at $x \frac{1}{4} 0$ and $2_{1, y}$ at $\frac{1}{4} y \frac{1}{4}$ and the symmetry centre \bar{I} at 000 . Let us place spins $\mathbf{S}_{j}(j=$ $1,2,3,4$) into the fourfold sites $4(a) 000(1) ; 00 \frac{1}{2}(2)$; $\frac{111}{222}$ (3) $; \frac{11}{22} 0(4)$. These 4 points are (equivalent) centres of symmetry.

The drawing of Fig. 1 allows us to write the following equations of transformation for the spin components of $\operatorname{spin} \mathrm{S}_{1}$.
$2_{1, x} S_{1 x}=S_{4 x} ; 2_{1, y} S_{1 x}=-S_{3 x} ; 2_{1, z} S_{1 x}=-S_{2 x}$
$2_{1, x} S_{1 y}=-S_{4 y} ; 2_{1, y} S_{1 y}=S_{3 y} ; 2_{1, z} S_{1 y}=-S_{2 y}$
$2_{1, x} S_{1 z}=-S_{4 z} ; 2_{1, y} S_{1 z}=-S_{3 z} ; 2_{1, z} S_{1 z}=S_{2 z}$
The operation $\overline{1}$ does not change any spin vector, which means that only the representations $\Gamma_{j g}(j=$ $1,2,3,4$) of Table 6 are involved in the above mentioned 4-point problem (the indices g and u stand for 'gerade' $=$ even and 'ungerade' = odd).

We are now prepared to apply the projection operator relation (3-3) to, say, $\Psi=S_{1 x}$. All the representations being one-dimensional we drop the indices $i j$ and obtain

$$
\begin{align*}
\Psi_{x}^{(\nu)}=\chi^{(\nu)}(e) S_{1 x} & +\chi^{(\nu)}\left(2_{x}\right) 2_{x} S_{1 x} \\
& +\chi^{(\nu)}\left(2_{y}\right) 2_{y} S_{1 x}+\chi^{(\nu)}\left(2_{z}\right) 2_{z} S_{1 x} \tag{4-2}
\end{align*}
$$

$\Psi_{x}^{(\nu)}$ will be a base vector which transforms according to $\Gamma^{x}{ }^{(\nu)}$.

We obtain in this way the vectors:

$$
\begin{array}{ll}
A_{x}=S_{1 x}-S_{2 x}-S_{3 x}+S_{4 x} \text { belonging to } & \Gamma_{1 g} \\
F_{x}=S_{1 x}+S_{2 x}+S_{3 x}+S_{4 x} & \Gamma_{2 g} \\
C_{x}=S_{1 x}+S_{2 x}-S_{3 x}-S_{4 x} & \Gamma_{3 g} \\
G_{x}=S_{1 x}-S_{2 x}+S_{3 x}-S_{4 x} & \Gamma_{4 g} .(4-3)
\end{array}
$$

What is their physical meaning? A vector like F_{x} reaches a maximum value for $S_{1 x}=S_{2 x}=S_{3 x}=S_{4 x}$ and is zero for any antiferromagnetic sign combination. It characterizes a ferromagnetic ++++ configuration. In the same way the \mathbf{G} vector is maximized by the spin arrangement $S_{1}=-S_{2}=S_{3}=-S_{4}$ and is zero for every other antiferromagnetic or ferromagnetic sign combination. Thus it characterizes the \mathbf{G} mode or a +-+- spin configuration. In the same way the \mathbf{A} and \mathbf{C} vectors characterize respectively +--+ and ++-- configurations.

The reader may complete the first part of Table 6 for the y and z components of the base vectors. Note that no 'ferromagnetic' component belongs to the identity representation.

It is easily checked that the same vector components are obtained with spins placed in the four equivalent symmetry centres in $4(b)$

$$
\frac{1}{2} 00(1) ; \frac{1}{2} 0 \frac{1}{2}(2) ; 0 \frac{11}{22}(3) ; 0 \frac{1}{2} 0(4) .
$$

The linear spin combinations $\mathbf{F}, \mathbf{G}, \mathbf{C}, \mathbf{A}$ could have been guessed intuitively. The reader should verify that
their components effectively belong to the indicated representations. For instance with the help of (4-1) and Fig. 1 one finds

$$
\begin{equation*}
2_{1, x} G_{x}=-G_{x} ; 2_{1, y} G_{x}=-G_{x} ; \overline{1} G_{x}=G_{x} \tag{4-4}
\end{equation*}
$$

so that, from the characters $-1,-1,+1$ of the respective generators $2_{1, x}, 2_{1, y}$ and $\overline{\mathrm{I}}, G_{x}$ belongs to $\Gamma_{4 g}$ according to Table 5.

As a second example we consider the positions $4(c)$ in $x y \frac{1}{4}(1) ; \bar{x} \bar{y} \frac{\overline{1}}{4}(2) ; \frac{1}{2}+x, \frac{1}{2}-y, \frac{\bar{T}}{4}(3) ; \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{4}$ (4).
The transformation properties for spin \mathbf{S}_{1} are given by:
$2_{1, x} S_{1 x}=S_{3 x} ; 2_{1, y} S_{1 y}=S_{4 y} ; 2_{1, z} S_{1 z}=S_{2 z} ;$
$\overline{\mathrm{I}} \mathrm{S}_{1}=\mathbf{S}_{2} ; 2_{1, x} . \overline{\mathrm{I}} S_{1 x}=S_{4 x} ; 2_{1, y} . \overline{\mathrm{I}} S_{1 y}=S_{3 y} ;$
$2_{1, z} \cdot \overline{1} S_{1 z}=S_{1 z}$,
and obvious relations for the missing components. Here the $\overline{1}$ operation transforms \mathbf{S}_{1} into \mathbf{S}_{2} so that the $\Gamma_{j u}$ representations will be relevant. Application of relation (3-3) to $S_{1 x}$ and $S_{1 y}$ in the representation $\Gamma_{7}=\Gamma_{3 u}$ yields

$$
\begin{align*}
& \Psi_{x}^{(\Gamma 7)}=S_{1 x}-S_{3 x}+\left(-S_{4 x}\right) \\
& \quad-\left(-S_{2 x}\right)-S_{2 x}+S_{4 x}-\left(-S_{3 x}\right)+\left(-S_{1 x}\right)=0 \tag{4-6}
\end{align*}
$$

and similarly

$$
\Psi_{y}^{\left(\Gamma_{7}\right)}=0 .
$$

This indicates that there is no x, y vector transforming according to Γ_{7}. However for the z component we get

$$
\begin{align*}
\Psi_{z}^{\left(\Gamma_{7}\right)}= & S_{1 z}-\left(-S_{3 z}\right)+\left(-S_{4 z}\right)-\left(-S_{2 z}\right)-\left(S_{2 z}\right)+\left(-S_{4 z}\right) \\
& +S_{1 z}=2\left(S_{1}-S_{2}+S_{3}-S_{4}\right)_{z}=2 G_{z}, \tag{4-7}
\end{align*}
$$

so that ' G_{z} belongs to Γ_{7} '. In the same way one constructs the whole of Table 6.

Transformation matrices

Finally let us show how to use the transformation matrices of the spin vectors. Table 7 summarizes the transformation properties of the points $4(c)$ numbered $1,2,3,4$. The parenthesis following these numbers indicates the lattice translations (see also Fig.2) which we disregard for the moment. We write the transformation properties not only for the spin S_{1} but for all the spins. For instance

$$
\begin{align*}
& 2_{1, x} S_{1 x}=S_{3 x} ; 2_{1}, x S_{2 x}=S_{4 x} ; \\
& 2_{1}, x S_{3 x}=S_{1 x} ; 2_{1, x} S_{4 x}=S_{2 x} \tag{4-8}
\end{align*}
$$

and similar equations for the y and z components. Relation (4-8) may be written in the matrix-form

$$
\alpha\left[\begin{array}{l}
S_{1 x} \\
S_{2 x} \\
S_{3 x} \\
S_{4 x}
\end{array}\right]=\left[\begin{array}{c}
S_{3 x} \\
S_{4 x} \\
S_{1 x} \\
S_{2 x}
\end{array}\right] \text { with } \alpha=\left[\begin{array}{cccc}
\cdot & \cdot & 1 & . \\
\cdot & \cdot & 1 \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right],(4-9)
$$

where dots are written for zeros.
The complete transformation matrix $\left(2_{1, x}\right)$ of order 12 may be written

$$
\left(2_{1, x}\right)=\left[\begin{array}{ccc}
x & y & z \\
\alpha & \cdot & \cdot \tag{4-10}\\
\cdot & -\alpha & \cdot \\
\cdot & \cdot & -\alpha
\end{array}\right] .
$$

In the same way one obtains

$$
\left(2_{1, y}\right)=\left[\begin{array}{ccc}
x & y & z \\
-\beta & \cdot & \cdot \tag{4-11}\\
\cdot & \beta & \cdot \\
\cdot & \cdot & -\beta
\end{array}\right] \text { with } \beta=\left[\begin{array}{ccc}
\cdot & \cdot & 1 \\
\cdot & \cdot & 1 \\
\cdot & 1 & \cdot \\
1 & \cdot & \cdot
\end{array}\right]
$$

and

$$
(\overline{1})=\left[\begin{array}{lll}
\gamma & \cdot & \cdot \tag{4-12}\\
\cdot & \gamma & \cdot \\
\cdot & \cdot & \gamma
\end{array}\right] \text { with } \gamma=\left[\begin{array}{llll}
\cdot & 1 & \cdots & \cdot \\
1 & \cdot & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & 1
\end{array}\right]
$$

One constructs the eight transformation matrices by appropriate multiplications of the 'generating' matrices $\left(2_{1}, x\right),\left(2_{1, y}\right)$ and ($\left.\overline{1}\right)$.
For instance
$(m)=\left(2_{1, z} \cdot \overline{1}\right)=\left(2_{1, x}\right)\left(2_{1, y}\right)(\overline{\mathrm{I}})=\left[\begin{array}{ccc}-\delta & . & . \\ \cdot & -\delta & \cdot \\ \cdot & . & \delta\end{array}\right]$
with

$$
\delta=\alpha \beta \gamma=\left[\begin{array}{llll}
1 & \cdot & \cdot & \cdot \tag{4-13}\\
. & 1 & \cdot & \cdot \\
. & . & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right]
$$

The traces of these eight matrices are zero except for

$$
\begin{equation*}
\chi(e)=12 \quad \text { and } \quad \chi\left(2_{z}, \overline{1}\right)=-4 \tag{4.14}
\end{equation*}
$$

Table 7. Point transformation in Pbnm. Sites 4(c)
$x y \frac{1}{4}$ (1); $\bar{x} \overline{\bar{T}} \frac{\bar{T}}{4}(2) ; \frac{1}{2}+x, \frac{1}{2}-y, \frac{\overline{1}}{4}(3) ; \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{4}(4), 2_{1, x}$ at $x, \frac{1}{4}, 0 ; 2_{1, y}$ at $\frac{1}{4}, y, \frac{1}{4} ; \overline{1}$ at $0,0,0$.

Operations	e	$2_{1, x}$	21,y	$2_{1, x} 2_{1, y}$	I	$2_{1, x}$. $\overline{1}$	$2_{1, y}$. $\overline{1}$	$22_{1, x} 2_{1, y}$. T
	1	3	4	2 (100)	2	,	,	1 (101)
	2	4	3 (001)	1 (101)	1	3	4	2 (100)
	3	1 (100)	2 (011)	4 (011)	4 (110)	2 (010)	1 (100)	3 (100)
	4	2 (100)	1 (010)	3 (010)	3 (110)	1 (010)	2 (101)	4 (101)

$2_{1, x}$ transforms point 1 to 3,2 to 4,3 to 1 plus a translation $1,0,0$ and 4 to 2 plus a translation $1,0,0$.

Reduction

The application of (3-2) indicates

$$
\begin{equation*}
a^{(\nu)}=\frac{1}{8}\left[12-4 \cdot \chi^{(\nu)}\left(2_{1}, z \cdot \overline{1}\right)\right] \tag{4-15}
\end{equation*}
$$

so that the representations $\Gamma_{1}, \Gamma_{4}, \Gamma_{6}, \Gamma_{7}$ are contained once $\left(\chi^{(\nu)}\left(2_{1, z} . \overline{1}\right)=+1\right)$ and the representations Γ_{2}, Γ_{3}, Γ_{5}, Γ_{8} twice $\left(\chi^{(\nu)}\left(2_{1, z}, \overline{1}\right)=-1\right)$. This exactly corresponds to the findings of Table 6.

The eight transformation matrices 'represent the space group' and form a representation Γ of order 12 which may be reduced. A first reduction into 3 subspaces of order 4 , corresponding to the x, y and z components is obvious. It is also easy to see that all the fourfold matrices of a subspace may be simultaneously reduced to diagonal form by the matrix $\Phi(4-16)$ the columns of which correspond precisely to the \mathbf{F}, \mathbf{G}, \mathbf{C} and \mathbf{A} vectors.

$$
\Phi=\frac{1}{2}\left[\begin{array}{rrrr}
\mathbf{F} & \mathbf{G} & \mathbf{C} & \mathbf{A} \tag{4-16}\\
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]=\Phi^{-1} .
$$

For instance for the subspace x one finds

$$
\begin{align*}
& \Phi^{-1} \alpha \Phi=\left[\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & -1 & \cdot \\
\cdot & \cdot & -1
\end{array}\right] ; \\
& \Phi^{-1}(-\beta) \Phi=\left[\begin{array}{ccc}
-1 & \cdot & \cdot \\
\cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot &
\end{array}\right] ; \\
& \Phi^{-1} \gamma \Phi=\left[\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & -1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & -1
\end{array}\right] ; \tag{4-17}
\end{align*}
$$

so that in the respective operations $2_{1 x}, 2_{1 y}$ and $\overline{1}$ from (4-16) and (4-17)

Fig. 2. Point transformation of the $4(c)$ positions in Pbnm, $\mathbf{k}=\left[0 \frac{1}{2} 0\right] .2_{1, y}$ in $\frac{1}{4} y \frac{1}{4}$ turns 1 to 4,2 to $3^{\prime}, 3$ to 2^{\prime} and 4 to 1^{\prime}. The number in parenthesis is the z coordinate.
F_{x} has the characters $1, \overline{1}, 1$ and belongs to Γ_{2}

G_{x}	$1,1, \overline{1}$	Γ_{6}
C_{x}	$\overline{1}, 1,1$	Γ_{3}
A_{x}	$\overline{1}, \overline{1}, \overline{1}$	Γ_{8}

(see Table 5).
Other examples of matrix representations are found in the next section.

At this point we may already note connexions with the Shubnikov groups and some of their difficulties.

Consider the example of ErFeO_{3} (Koehler, Wollan \& Wilkinson, 1960) or ErCrO_{3} (Bertaut \& Maréschal, 1967a). At low temperatures the spin components of Fe (or Cr) belong to a \mathbf{G} mode with x and y components and those of Er to a \mathbf{C} mode along Oz. Actually $G_{x}(\mathrm{Fe}, \mathrm{Cr})$ belongs to Γ_{4} whereas $G_{y}(\mathrm{Fe}, \mathrm{Cr})$ and $C_{z}(\mathrm{Er})$ belong to Γ_{1} so that different magnetic groups be involved, say $P b^{\prime} n^{\prime} m$ and $P b n m$ (see last column of Table 6). The 'global magnetic symmetry' would be the intersection of these two magnetic groups, say the monoclinic group $P 2_{1} / m$.

Another example is TbFeO_{3} (Bertaut, Chappert, Maréschal, Rebouillat \& Sivardière, 1967) where one finds at $1.5^{\circ} \mathrm{K}$ the Fe -spins in a G_{x} mode belonging to Γ_{4} or $P b^{\prime} n^{\prime} m$ and the Tb -spins in a non-collinear $A_{x} G_{y}$ arrangement belonging to Γ_{8} or Pbnm^{\prime}. Here the two magnetic groups have the intersection $P 2_{1}^{\prime} 2_{1}^{\prime} 2_{1}$.
In the two cases we see that it is possible to indicate a 'global Shubnikov group' which is of lower symmetry than the Shubnikov groups associated with the representations of the individual ions.

We may say that the interactions between different ions will have the symmetry of the global Shubnikov group. However there is no reason to believe that interactions between ions of the same nature would not have the higher symmetry associated with their representations. To be explicit, the $\mathrm{Tb}-\mathrm{Tb}$ interactions in TbFeO_{3} may have the symmetry Pbnm^{\prime}, the $\mathrm{Fe}-\mathrm{Fe}$ interactions would belong to the symmetry $P b^{\prime} n^{\prime} m$ and only $\mathrm{Fe}-\mathrm{Tb}$ interactions (if any) would have the lower symmetry $P 2_{1}^{\prime} 2_{1}^{\prime} 2_{1}$.

We must conclude that the concept of global magnetic symmetry invariance has not the same strength as the concept of say positional invariance of a crystal under the operations of its space group.

From the point of view of representation theory there is, however, no conceptual difficulty in admitting that in the same crystallographic space group there might be spin components belonging to different representations. The physical reasons will become more apparent in $\S 6$. We should like to point out the similarity with the problem of cryptosymmetry discussed by Niggli \& Wondratschek (1960) and Wondratschek \& Niggli (1961).

5. Representations and base functions for $k \neq 0$

The division of this section roughly follows the needs of the projection operator method, which are the
knowledge of irreducible space group representations and of the properties of transformation of spin vectors, both associated with the wave vector \mathbf{k}. The first part, recalling essential notions and including the Olbrychski (1963) method will be quite abstract. The second part dealing with the transformation properties is easy again and has been extended to show that the basis functions obtainable by the projection operator method may also be gained from the transformation properties themselves.
Any symmetry operator C_{α} of a space group G may be written in the form (5-1) where α is a (proper or improper) rotation and τ_{α} its translational part. The multiplication law is (5-2).

$$
\begin{gather*}
C_{\alpha}=\left\{\alpha \mid \tau_{\alpha}\right\} \tag{5-1}\\
C_{\alpha} C_{\beta}=\left\{\alpha \mid \tau_{\alpha}\right\}\left\{\beta \mid \tau_{\beta}\right\}=\left\{\alpha \beta \mid \alpha \tau_{\beta}+\tau_{\alpha}\right\} . \tag{5-2}
\end{gather*}
$$

The wave vector \mathbf{k} numbers the representations of the subgroup T of primitive translations \mathbf{R}_{n}

$$
\begin{equation*}
\mathfrak{D}^{\left(\mathbf{k}_{v}\right)}\left\{e \mid \mathbf{R}_{n}\right\}=\exp \left(2 \pi i \mathbf{k} \cdot \mathbf{R}_{n}\right) \cdot \mathbf{1}^{(v)} . \tag{5-3}
\end{equation*}
$$

Here $\mathbf{1}^{(\nu)}$ is the unit matrix in the representation numbered v.

The wave-vector groups G^{k} and their representations are defined as follows. The set of all rotational elements which leave the vector \mathbf{k} invariant is a group noted G_{0}^{k} which is identical with one of the 32 point groups. Let $\mathfrak{D}^{(1)}(\beta)$ be a representation of the point group G_{0}^{k} numbered by the index v. (For instance there are eight representations $v=1, \ldots, 8$ when $G_{0}^{k}=m m m$ (see Table 5). Then the representations of the wavevector group G^{k} are given by

$$
\begin{equation*}
\mathfrak{D}^{\left(\mathbf{k}_{\nu}\right)}\left(\left\{\beta \mid \boldsymbol{\tau}_{\beta}\right\}\right)=\exp \left(2 \pi i \mathbf{k} \cdot \boldsymbol{\tau}_{\beta}\right) \mathfrak{D}^{(\nu)}(\beta), \tag{5-4}
\end{equation*}
$$

with some restrictions however. Formula (5-4) holds at the interior of the first Brillouin zone for all groups. At the surface it still holds for the symmorphic space groups, i.e. those in which τ_{β} is a lattice translation.

In the 157 non-symmorphic space groups relation (5-4) does not hold in general. (For instance, for the $D_{2 h}^{\prime}$ groups one would expect, from relation (5-4) and Table 5, to find only one-dimensional representations. This is no longer true on the surface of the first Brillouin zone).

Remark: We do not deal more specifically with relation (5-4) except for the simplest case when G_{0}^{k} has no element except the identity e which may happen for an incommensurable wave vector \mathbf{k}. The oscillating spin [in chromium (Shirane \& Takei, 1962)]

$$
\begin{equation*}
\mathbf{S}\left(\mathbf{R}_{n}\right)=S_{0} \mathbf{x} \cos \left(2 \pi \mathbf{k} \cdot \mathbf{R}_{n}+\varphi\right) \tag{5-5}
\end{equation*}
$$

and the helical spin [in dysprosium (Wilkinson, Koehler, Wollan \& Cable, 1961)]

$$
\begin{align*}
& \mathbf{S}\left(\mathbf{R}_{n}\right)=S_{0}\left[\mathbf{x} \cos \left(2 \pi \mathbf{k} \cdot \mathbf{R}_{n}+\varphi\right)\right. \\
& \left.\quad+\mathbf{y} \sin \left(2 \pi \mathbf{k} \cdot \mathbf{R}_{n}+\varphi\right)\right] \tag{5-6}
\end{align*}
$$

appear to be vectors belonging to particularly simple representations of the vector \mathbf{k}.

The Olbrychski method

In this method one chooses first a convenient set of generators of the group. In a second step one forms the complete set of relations between the generators which induce relations between their matrix representatives. Finally one looks for the explicit form of these matrices which yield the desired irreducible representations.

We illustrate the method by applying it to the space groups $D_{2 h}^{i}$ and more particularly to two examples $\operatorname{Pbam}\left(D_{2 h}^{9}\right)$ and $\operatorname{Pbnm}\left(D_{2 h}^{16}\right)$ when the \mathbf{k} vectors have the full point symmetry of G_{0}, say mmm .

One may take as generators the Hermann-Mauguin symbols themselves. However, other choices are as well suited. We select here the binary screw axes $2_{1, x}$ and $2_{1, y}$ and the symmetry centre $\overline{1}$ taken at the origin. We write

$$
\begin{equation*}
2_{1, x}=\left\{2_{x} \mid \tau_{x}\right\} ; 2_{1, y}=\left\{2_{y} \mid \tau_{y}\right\} ; \bar{T}=\{I \mid 0\}, \tag{5-7}
\end{equation*}
$$

where $2_{x}, 2_{y}$ are binary axes and I is the inversion, which may be represented by matrices of order 3. The translations τ_{x}, τ_{y} must be specified for each space group $D_{2 h}^{i}$ (see Appendix 1).

In the underlying point group $G_{0}^{k}=G_{0}$, the six defining relations between the generators $2_{x}, 2_{y}$ and I are

$$
\begin{equation*}
2_{x}^{2}=2_{y}^{2}=I^{2}=e ; 2_{x} 2_{y}=2_{y} 2_{x} ; 2_{x} I=I 2_{x} . \tag{5-8}
\end{equation*}
$$

One finds correspondingly

$$
\begin{array}{lll}
2_{1, x}^{2} & =\left\{e \mid \mathbf{t}_{1}\right\} & \text { with } \mathbf{t}_{1}=\left(2_{x}+e\right) \boldsymbol{\tau}_{x} \\
2_{1, y}^{2} & =\left\{e \mid \mathbf{t}_{2}\right\} & \text { with } \mathbf{t}_{2}=\left(2_{y}+e\right) \tau_{y}
\end{array}
$$

$$
(\overline{\mathrm{I}})^{2}=\{e \mid 0\}
$$

$$
2_{1, x} \cdot \overline{\mathrm{I}}=\left\{e \mid \mathbf{t}_{13}\right\} \overline{1} .2_{1, x} \quad \text { with } \mathbf{t}_{13}=2 \tau_{x}
$$

$$
2_{1, y} \cdot \overline{1}=\left\{e \mid \mathbf{t}_{23}\right\} \overline{1} \cdot 2_{1, y} \quad \text { with } \mathbf{t}_{23}=2 \tau_{y}
$$

$$
2_{1, x} \cdot 2_{y}=\left\{e \mid \mathbf{t}_{12}\right\} 2_{1, y} .2_{1, x} \text { with } \mathbf{t}_{12}=\left(2_{x}-e\right) \boldsymbol{\tau}_{y}
$$

$$
\begin{equation*}
-\left(2_{y}-e\right) \tau_{x} \tag{5-9}
\end{equation*}
$$

The last equation of (5-9) is derived in Appendix 1 with the values of the translations \mathbf{t} in groups Pbam and Pbnm.

Let us call A_{1}, A_{2} and A_{3} the matrix representations of $2_{1, x}, 2_{1, y}$ and $\overline{1}$ respectively and remember that the representative of the translation \mathbf{t} in the space group representation associated with the wave-vector \mathbf{k} is $\mathbf{1} . \exp 2 \pi i \mathbf{k} . \mathbf{t}$, where $\mathbf{1}$ is a unit matrix. The relations (5-9) become

$$
\begin{align*}
& A_{j}^{2}=\varepsilon_{j} . \mathbf{1} ; A_{i} A_{j}=A_{j} A_{i} \varepsilon_{i j} ; i, j=1,2,3 \\
& \text { with } \tag{5-10}\\
& \varepsilon_{j}=\exp \left(2 \pi i \mathbf{k} \cdot \mathbf{t}_{j}\right) ; \varepsilon_{i j}=\exp \left(2 \pi i \mathbf{k} \cdot \mathbf{t}_{i j}\right) .
\end{align*}
$$

One has in Pbnm (see Appendix 1)
$\varepsilon_{1}=\exp \left[2 \pi i k_{1}\right] ; \varepsilon_{2}=\exp \left[2 \pi i k_{2}\right] ; \varepsilon_{3}=1$
$\varepsilon_{12}=\exp \left[2 \pi i\left(k_{1}-k_{2}-k_{3}\right)\right] ; \varepsilon_{13}=\exp \left[2 \pi i\left(k_{1}+k_{2}\right)\right]$
$\varepsilon_{23}=\exp \left[2 \pi i\left(k_{1}+k_{2}+k_{3}\right)\right]$.

Here the $k_{j}(j=1,2,3)$ are the components of the wavevector \mathbf{k}

$$
\begin{equation*}
\mathbf{k}=k_{1} \mathbf{b}_{1}+k_{2} \mathbf{b}_{2}+k_{3} \mathbf{b}_{3} . \tag{5-12}
\end{equation*}
$$

It is worth while to tabulate the phase factors ε_{j} and $\varepsilon_{j k}$ for those \mathbf{k} vectors which are associated with the full point group symmetry (see Table 8). It is seen that only for $\mathbf{k}=0$ and $\mathbf{k}=\frac{1}{2}\left(\mathbf{b}_{1}+\mathbf{b}_{2}\right)$ the matrices $A_{j}(j=$ $1,2,3$) commute (all $\varepsilon_{i j}$ positive) so that their representations are one-dimensional real for $\mathbf{k}=0\left(\varepsilon_{i}=+1\right)$ and complex for $\mathbf{k}=\frac{1}{2}\left(\mathbf{b}_{1}+\mathbf{b}_{2}\right)$. Their derivation is of course trivial.

We shall derive here the irreducible representations belonging to the wave-vector $k=\frac{1}{2} \mathbf{b}_{2}$ for which the equations (5-10) read

$$
\begin{align*}
& A_{1}^{2}=A_{2}^{2}=1 ; A_{3}^{2}=-1 \\
& A_{i} A_{j}=-A_{j} A_{i} \text { for } i, j=1,2,3(i \neq j) . \tag{5-13}
\end{align*}
$$

Because in (5-13) there are anti-commuting matrices, there cannot be any one-dimensional representation. There cannot be any three-dimensional representation, because $3^{2}=9$ exceeds the order 8 of the group. Finally we are left with two two-dimensional representations because $g=8=2^{2}+2^{2}$. Their explicit form, given by the simple identification procedure of Appendix 2, is tabulated in Table 9.

Transformation properties for $\mathbf{k}=\frac{1}{2} \mathbf{b}_{2}$ in $\operatorname{Pbnm}\left(D_{2 h}^{16}\right)$
The transformation properties of the points $4(c)$ can be simply gained from geometrical inspection. We read
from Fig. 2 that the screw axis $2_{1, y}$ sends point 1 to 4 , point 2 to $3^{\prime}\left(=3\right.$ plus a translation \mathbf{a}_{3}), point 3 to point $2^{\prime}\left(=2\right.$ plus a translation $\left.\mathbf{a}_{2}+\mathbf{a}_{3}\right)$ and point 4 to point $1^{\prime}\left(=1\right.$ plus translation $\left.\mathbf{a}_{2}\right)$. Keeping in mind that spin reversal takes place after a translation \mathbf{a}_{2} one has the following relations for the spin vectors

$$
\begin{align*}
& 2_{1, y} S_{1 y}=S_{4 y} ; 2_{1, y} S_{2 y}=S_{3 y} \\
& 2_{1, y} S_{3 y}=S_{2 y}^{\prime}=-S_{2 y} ; 2_{1, y} S_{4 y}=S_{1 y}^{\prime}=-S_{1 y} \tag{5-14}
\end{align*}
$$

In the way described above one derives the transformation properties for points already summarized in Table 7 and for the spin vectors given in Table 10.

To use relation (3-3) it is convenient to consider for Ψ the following linear spin combinations*

$$
\begin{equation*}
\Psi^{+}=\frac{1}{2}\left(S_{1 x}+S_{2 x}\right) ; \Psi^{-}=\frac{1}{2}\left(S_{1 x}-S_{2 x}\right) \tag{5-15}
\end{equation*}
$$

With the help of the matrices of the representation $\Gamma_{k_{1}}$ (Table 9) and the transformation properties of the x components (Table 10) one finds from Ψ^{+}:

$$
\begin{align*}
& \Psi_{11}^{+}=F_{x} ; \Psi_{12}^{+}=-F_{x} \\
& \Psi_{21}^{+}=-C_{x} ; \Psi_{22}^{+}=C_{x} \tag{5-16}
\end{align*}
$$

and from Ψ^{-}:

$$
\begin{align*}
& \Psi_{\overline{11}}=G_{x} ; \Psi_{\overline{12}}=G_{x} \\
& \Psi_{\overline{21}}=A_{x} ; \Psi_{22}=A_{x} \tag{5-17}
\end{align*}
$$

* One might take as well $\psi=S_{1 x}$ for instance. The functions obtained in this way are, however, less symmetrical.

Table 8. Phase factors ε_{j} and $\varepsilon_{i j}$ in Pbnm

k	ε_{1}	ε_{2}	ε_{3}	ε_{12}	ε_{23}	ε_{31}	Order of irreducible representations	Nature and numbe	
0	1	1	1	1	1	1	1	Real	8
$\frac{1}{2} \mathrm{~b}_{1}$	-1	1	1	-1	-1	-1	2	Real	2
$\frac{1}{2} \mathrm{~b}_{2}$	1	-1	1	-1	-1	-1	2	Real	2
$\frac{1}{2} \mathrm{~b}_{3}$	1	1	1	-1	-1	1	2	Real	2
$\frac{1}{2}\left(b_{2}+b_{3}\right)$	1	-1	1	1	1	-1	2	Complex	2
$\frac{1}{2}\left(b_{3}+b_{1}\right)$	-1	1	1	1	1	-1	2	Real	2
$\frac{3}{2}\left(b_{1}+b_{2}\right)$	-1	-1	1	1	1	1		Complex	8
$\frac{1}{2}\left(b_{1}+b_{2}+b_{3}\right)$	-1	-1	1	-1	-1	1	2	Complex	

Table 9. Irreducible representations of Pbnm. Wave-vector $\mathbf{k}=\left[0 \frac{1}{2} 0\right]$

A_{1}, A_{2} and A_{3} are the representatives of $2_{1}, x, 2_{1, y}$ and $1 . \Gamma_{2 k}$ is obtained by reversing the sign of A_{3}.

Table 10. Spin transformations in Pbnm. Sites $4(c) . \mathbf{k}=\left[0 \frac{1}{2} 0\right] . x$ components

e	$2_{1, x}$	$2_{1, y}$	$2_{1, z}$	T	$2_{1, x} \cdot \mathrm{~T}$	$2_{1, y} \cdot \mathrm{~T}$	$2_{1, z} \cdot \mathrm{~T}$
$S_{1 x}$	$S_{3 x}$	$-S_{4 x}$	$-S_{2 x}$	\mathbf{S}_{2}	$S_{4 x}$	$-S_{3 x}$	$-S_{1 x}$
$S_{2 x}$	$S_{4 x}$	$-S_{3 x}$	$-S_{1 x}$	\mathbf{S}_{1}	$S_{3 x}$	$-S_{4 x}$	$-S_{2 x}$
$S_{3 x}$	$S_{1 x}$	$S_{2 x}$	$S_{4 x}$	$-\mathbf{S}_{4}$	$-S_{2 x}$	$-S_{1 x}$	$-S_{3 x}$
$S_{4 x}$	$S_{2 x}$	$S_{1 x}$	$S_{3 x}$	$-\mathbf{S}_{3}$	$-S_{1 x}$	$-S_{2 x}$	$-S_{4 x}$

According to $\S 3$ the functions $\Psi_{i j}$ with j fixed are 'partners belonging to the j th row'. The physical meaning of the fact that G_{x} and A_{x} for instance are 'partners' in the two-dimensional representation $\Gamma_{k_{1}}$ is that they provide an equivalent description of the same physical reality. This fact is illustrated in Fig.3. By applying also projection operators to the functions $\frac{1}{2}\left(S_{1 y} \pm S_{2 y}\right)$ and $\frac{1}{2}\left(S_{1 z} \pm S_{2 z}\right)$ one arrives at the results of Table 11 . It is found that all the x and y vectors belong to $\Gamma_{k 1}$, the z vectors to $\Gamma_{k_{2}}$.

Table 11. Partners of irreducible representations

	${ }^{\Gamma_{k 1}}$					
φ_{1}	F_{x}	G_{x}	C_{y}	A_{y}	C_{z}	\boldsymbol{A}_{z}
φ_{2}	$-C_{x}$	A_{x}	$-F_{y}$	G_{y}	F_{z}	$-G_{z}$

The transformation matrices for $\mathbf{k}=\left[0 \frac{1}{2} 0\right]$
The transformation matrices $\left(2_{1, x}\right),\left(2_{1, y}\right)$ and ($\overline{1}$) may be written in the same forms as in (4-10), (4-11), (4-12) with:

$$
\begin{gather*}
\alpha=\left[\begin{array}{cccc}
. & \cdot & \cdot \\
. & \cdot & 1 \\
1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right] ; \beta=\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot \\
\cdot & -1 & \cdot \\
-1 & \cdot & \cdot
\end{array}\right] ; \\
\gamma=\left[\begin{array}{ccc}
\cdot 1 & \cdot & \cdot \\
1 \cdot & \cdot & \cdot \\
\cdot & \cdot & -1 \\
\cdot & -1 & \cdot
\end{array}\right] . \tag{5-18}
\end{gather*}
$$

Note that the transpose of β is $-\beta$. From (3-1) it follows that the transposes of $\left(2_{1, x}\right),\left(2_{1, y}\right)$ and ($\left.\overline{1}\right)$, say $A_{1}^{\Gamma}, A_{2}^{\Gamma}$ and A_{3}^{Γ}, generate a 12 -dimensional representation Γ which is reducible. Of course, as the reader may check, these matrices follow exactly the multiplication rules reached by the Olbrychski method in (5-10) and in (5-13) so that the irreducible representations $\Gamma_{k 1}$ and $\Gamma_{k 2}$ could have been found by the same identification procedure as in Appendix 2.

The only non-zero traces are

$$
\begin{equation*}
\chi^{\Gamma}(e)=12 ; \chi^{\Gamma}\left(A_{1} A_{2} A_{3}\right)=-4, \tag{5-19}
\end{equation*}
$$

so that from (5-20) the representations $\Gamma_{k_{1}}$ and $\Gamma_{k_{2}}$

$$
\begin{align*}
& a^{\left(k_{1}\right)}=\frac{1}{8}(2 \cdot 12-2 \cdot(-4)=4 \\
& a^{\left(k_{2}\right)}=\frac{1}{8}(24-8)=2 \tag{5-20}
\end{align*}
$$

are contained respectively 4 and 2 times in Γ. This is exactly the number of couples of partners in Table 11 for the respective representations.

The direct reduction method

This method is based on the explicit form of the transformation relations. For instance by simply adding the equations (5-14) one gets

$$
\begin{aligned}
2_{1, y}\left(S_{1}+S_{2}+S_{3}+S_{4}\right)_{y} & = \\
2_{1, y} F_{y} & =\left(S_{4}+S_{3}-S_{2}-S_{1}\right)_{y}=-C_{y}
\end{aligned}
$$

and similarly

$$
\begin{align*}
2_{1, y}\left(S_{1}+S_{2}-S_{3}-S_{4}\right) & = \\
& 2_{1, y} C_{y}=F_{y}=-\left(-F_{y}\right) \tag{5-21}
\end{align*}
$$

Relations (5-21) suggest already that C_{y} and $-F_{y}$ are partners in a two-dimensional representation. One finds in the same way

$$
\begin{array}{ll}
2_{1, x} C_{y}=C_{y} ; & \overline{1} C_{y}=-\left(-F_{y}\right) \\
2_{1, x}\left(-F_{y}\right)=-\left(-F_{y}\right) ; \overline{1}\left(-F_{y}\right)=-C_{y} \tag{5-22}
\end{array}
$$

Thus we have derived in a very simple way the three following transformation matrices in the two-dimensional space of the vectors C_{y} and $-F_{y}$:

$$
\begin{gather*}
\left(2_{1}, x\right)=\left[\begin{array}{cc}
1 & \cdot \\
\cdot & -1
\end{array}\right] ;\left(2_{1, y}\right)=\left[\begin{array}{cc}
. & -1 \\
1 & \cdot
\end{array}\right] ; \\
(\overline{\mathrm{I}})=\left[\begin{array}{cc}
\cdot & -1 \\
-1 & \cdot
\end{array}\right] . \tag{5-23}
\end{gather*}
$$

Their transposes are exactly the matrices A_{1}, A_{2} and A_{3} of the representation $\Gamma_{k 1}$ so that C_{y} and $-F_{y}$ are partners in that representation. One can find in the same way the representation $\Gamma_{k 2}$ as well as all the other basis functions.

Remark: If one had taken C_{y} and $+F_{y}$ as partners one would have got another set of matrices for A_{1}, A_{2} and A_{3} corresponding to one of the equivalent forms shown in Appendix 2.

Generalization of the matrix method

The matrix-method is easily generalized to any \mathbf{k} vector. For instance when 2_{y} is an element of G_{0}^{k} (i.e. an operation which leaves \mathbf{k} invariant, which is only true for $2 k_{1}=0$ or $1,2 k_{3}=0$ or 1), the transformation matrix $\left(2_{1, y}\right)$ has the form

Fig. 3. Equivalence of the A_{x} and G_{x} configuration in Pbnm, $\mathbf{k}=\left[0 \frac{1}{2} 0\right]$. The spins $1,2,3,4$ form $\mathrm{a}+-+-$ or G_{x} sequence. The spins $1^{\prime}, 2^{\prime}$ and 3^{\prime} are displaced by $\mathbf{a}_{2}, \mathbf{a}_{1}+\mathbf{a}_{2}$ and $-\mathbf{a}_{1}$ with respect to 1,2 and 3 . Take a new origin at $0 \frac{1}{2} 0$ and call the coordinates of point $4: x^{\prime}, y^{\prime}, \frac{1}{4}$. In the new (primed) coordinate system, our four-point sequence becomes 4, 3^{\prime}, $2^{\prime}, 1^{\prime}$ with spins -++- . This is an A_{x} sequence which describes the spin configuration as well.

$$
\left(2_{1, y}\right)=\left[\begin{array}{ccc}
-\beta & \cdot & \cdot \\
\cdot & \beta & \cdot \\
\cdot & \cdot & -\beta
\end{array}\right]
$$

with

$$
\beta=\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & 1 \tag{5-24}\\
\cdot & \cdot & \exp \left(2 \pi i k_{3}\right) & \cdot \\
\cdot & \exp \left[2 \pi i\left(k_{2}+k_{3}\right)\right] & \cdot & \cdot \\
\exp \left(2 \pi i k_{2}\right) & \cdot & \cdot & \cdot
\end{array}\right]
$$

where the phase factors 'represent' the translations written in parenthesis after the transformed points of Table 9. The matrices which one gets after transposition play exactly the role of the Olbrychski matrices. One has for instance

$$
\begin{equation*}
\left(A_{2}^{\Gamma}\right)^{2}=\exp \left(2 \pi i k_{2}\right) . \mathbf{1} \tag{5-25}
\end{equation*}
$$

in conformity with (5-10).

Examples

Examples of structures with \mathbf{k} vectors on the Bril-louin-zone are already found in the literature.

The spin configuration of Tb in TbCrO_{3} (Bertaut, Maréschal \& de Vries, 1967) is an example of a structure belonging to a two-dimensional irreducible representation of Pbnm associated with the wave-vector $\mathbf{k}=\left[0 \frac{1}{2} 0\right] . \mathrm{Tb}$ has an $A_{x} G_{y}$ configuration (see Table 12).

The spin configuration of Dy in DyCrO_{3} (Bertaut \& Maréschal ,1967b) belongs to a complex one-dimensional irreducible representation of Pbnm associated with the wave-vector $\mathbf{k}=\left[\frac{11}{2} 0\right]$.

Let us now mention here an additional difficulty of Shubnikov groups. In the two preceding examples the rare-earth ordering requires enlargement of the unit cell in at least one direction whereas the Cr -spins retain the periodicity of the chemical cell. In TbCrO_{3} for instance, the Tb -spin configuration would belong to a magnetic $P_{2 b}$ group whereas the Cr configuration remains in a simple P group.

Another example is the magnetic structure of V spins in $\mathrm{V}_{2} \mathrm{CaO}_{4}$ (Bertaut \& Nhung, 1967) belonging to a two-dimensional representation of Pbnm with $\mathbf{k}=$ $\left[\frac{1}{2} 0 \frac{1}{2}\right]$. It is interesting to note that the same structure has been solved by Hastings, Corliss, Kunnmann \& La Placa (1967) in monoclinic Shubnikov groups.

Finally the magnetic structure of the Mn atoms in $\mathrm{RMn}_{2} \mathrm{O}_{5}(\mathrm{R}=$ rare earth or yttrium or bismuth) has been solved by the direct reduction method applied to the space group Pbam with $\mathbf{k}=\left[\frac{1}{2} 0 \frac{1}{2}\right]$ (Bertaut, Buisson, Quézel-Ambrunaz \& Quézel, 1967).

6. Effective spin Hamiltonian and magnetic couplings

We consider purely magnetic interactions (i.e. interactions which are not coupled with other forms of energy - elastic, electric, and so on; see also § 7). Let us require that the effective spin Hamiltonian is invariant under the 'actual' crystallographic space group and under the reversal of all the spins. The physical foundation of this last requirement is that the magnetic energy of a single domain does not change (neglecting boundaries) by spin reversal and that nature always shows the coexistence of A domains and reversed $B(=-A)$ domains.

The spin Hamiltonian must have the form:

$$
\begin{align*}
& H=\sum_{\substack{R, R^{\prime}, \alpha, \beta \\
(\alpha, \beta=x, y, z)}} A_{\alpha \beta}\left(\mathbf{R}, \mathbf{R}^{\prime}\right) S_{\alpha}(\mathbf{R}) S_{\beta}\left(\mathbf{R}^{\prime}\right) \\
&+H_{4}+H_{6}+\ldots
\end{align*}
$$

Here $S_{\alpha}(\mathbf{R})$ is the α-component of a spin \mathbf{S} localized in point \mathbf{R}. $A_{\alpha \beta}\left(\mathbf{R}, \mathbf{R}^{\prime}\right)$ is a 3×3 matrix which represents a tensor of order two. By H_{4} and H_{6} we indicate the possible existence of terms of order 4 and 6 in the spins.

It is then a very trivial matter to see that if a Hamiltonian of the form (6-1) is invariant under an operation C_{k} of the crystallographic space group G, it is also invariant under the operation $C_{k}^{\prime}=C_{k} R$ of the isomorphous magnetic space group G^{\prime} and vice versa because $R^{n}=+1$ for n even. Thus H will be invariant under G and G^{\prime}.

The construction of a Hamiltonian of form (6-1) may be quite cumbersome and it is advantageous to introduce, instead of the spins, the basis vectors of irreducible representations which are linear combinations of the spins. Indeed the linear system of the basis vectors may be resolved with respect to the spins*. In the approximation of a spin Hamiltonian of order two,

[^0]Table 12. Representations of axial vectors and polar vectors in Pnma'

Representation	Pnma [Sites 4(c)]					
	Generators			Axial vectors		
	$21, x$	$22_{1, z}$	I	x	y	z
$\Gamma_{1}=\Gamma_{19}$	+	+	$+$		C	
$\Gamma_{2}=\Gamma_{2 g}$	+	-	+	F	.	C
$\Gamma_{3}=\Gamma_{3 g}$	-	+	+	C	.	F
$\Gamma_{4}=\Gamma_{4 g}$	-	-	+	.	F	.
$\Gamma_{5}=\Gamma_{1 u}$	+	+	-	A		G
$\Gamma_{6}=\Gamma_{2 u}$	+	-	-		G	.
$\Gamma_{7}=\Gamma_{3} u$	-	+	-		A	.
$\Gamma_{8}=\Gamma_{4 u}$	-	-	-	G		A

Pnma' [Sites 4(c)]						Pnma [Sites 4(c)]		
Generators			Axial vectors				ve	
$2{ }_{1, x}$	$22_{1,2}$	I	x	y	z	x	y	z
+	+	+		A		A		G
+	-	+	G	.	A		G	.
-	+	+	A		G		A	
-	-	+	.	G	.	G		A
+	+	-	C		F		C	
+	-	-	.	F	.	F	.	C
-	+	-	\dot{F}	C	C	C	F	F
-	-	-	F		C		F	

one will get, after substitution, a quadratic form of the base vectors. The advantage of the new quadratic form is that one can only have products of basis vectors belonging to the same irreducible representation. This is due to the group theorem that only the direct product of an irreducible representation with itself \dagger contains the identity representation and thus gives rise to invariants.
$\Gamma_{j} \times \Gamma_{j}$ contains Γ_{0} (identity representation). (6-2)
Physically one may explain in this way most of the so called 'canted' spin structures. For instance the occurrence of the non-zero product $a_{x z} F_{x} G_{z}$ in the spin Hamiltonian of group Pbnm ($\mathbf{k}=0$) means that a ++++ sequence in the x direction is coupled with a +-+- sequence of spins in the z direction. This is for instance the case in YFeO_{3} where a 'weak' ferromagnetism F_{x} is seen magnetically (Bozorth, Williams \& Walsh, 1956) whereas neutron diffraction mainly \ddagger observes a G_{z} configuration. Another example in the same space group Pbnm is the structure of $\beta-\mathrm{CoSO}_{4}$ (Bertaut, Coing-Boyat \& Delapalme, 1963) where A_{x}, G_{y}, C_{z} are seen to coexist ($c f$. Table 6 in Γ_{1}).

Remark: It is interesting to note in this context that one has to deal here with a 'phase problem'. Indeed in the last case, the observed magnetic lines are A or G or C lines (with no interferences) so that in fact one observes $A_{x}^{2}, G_{y}^{2}, C_{z}^{2}$. Thus the spin models are not unique and to the proposed solution A_{x}, G_{y}, C_{z} (Bertaut et al., 1963) one must add three other possible solutions giving rise to exactly the same interference pattern, say $-A_{x},+G_{y},+C_{z} ;+A_{x},-G_{y},+C_{z} ;+A_{x}$, $+G_{y},-C_{z}$ (Bertaut, 1966).
Several conclusions may be reached concerning the number of irreducible representations and the order of the Hamiltonian.

Case of one magnetic species of equivalent atoms

We have seen that a Hamiltonian of order two implies that the spin components must belong to the same irreducible representation. Conversely one may often conclude that if the spin components belong to the same irreducible representation, the approximation of a spin Hamiltonian of order two is sufficient. If the spin components $\mathbf{S}^{(\alpha)}$ and $\mathbf{S}^{(\beta)}$ belong to different ir reducible representations $\Gamma^{(\alpha)}$ and $\Gamma^{(\beta)}$, the spin Hamiltonian must have terms of order four at least. Another consequence is that $\mathbf{S}^{(\alpha)}$ must be orthogonal to $\mathbf{S}^{(\beta)}$.
Indeed if

$$
\begin{equation*}
\mathbf{S}_{\mathbf{R}}=\mathbf{S}_{\mathbf{R}}^{(\alpha)}+\mathbf{S}_{\mathbf{R}}^{(\beta)} \tag{6-3}
\end{equation*}
$$

one must have

$$
\begin{equation*}
S_{R}^{2}=S_{R}^{(\alpha) 2}+S_{R}^{(\beta))^{2}}+2 \mathbf{S}_{\mathbf{R}}^{(\alpha)} \cdot \mathbf{S}_{\mathbf{R}}^{(\beta)}=\text { invariant } . \tag{6-4}
\end{equation*}
$$

$\mathbf{S}_{\mathbf{R}}^{(\alpha)} \cdot \mathbf{S}_{\mathbf{R}}^{(\beta)}$ transforms according to the direct product
\dagger If Γ_{j} is complex, one must take $\Gamma_{j} \times \Gamma_{j}{ }^{*}$.
\ddagger The weak ferromagnetic component is here about one per cent of the antiferromagnetic one and can be evidenced with the help of polarized neutrons.
$\Gamma^{(\alpha)} \times \Gamma^{(\beta)}$ (which does not contain the identity representation) and thus must disappear.

An example is the occurrence of 'conical spins' in which the linear and the helical components belong to different wave vectors and are orthogonal (for examples see Kaplan (1961), Elliott (1961) and Wilkinson et al. (1961)].

We remark finally that no spin can belong to more than three irreducible representations $\Gamma^{(\alpha)}, \Gamma^{(\beta)}, \Gamma^{(\gamma)}$ and that the three components $\mathbf{S}^{(\alpha)}, \mathbf{S}^{(\beta)}, \mathbf{S}^{(\gamma)}$ must be orthogonal (demonstration as above).

Case of two magnetic species (non-equivalent atoms)

If all the spin components belong to the same irreducible representation, we may suppose that coupling between the two species takes place within a Hamiltonian of order two: This is exemplified by HoFeO_{3} (Koehler et al., 1960) and HoCrO_{3} (Bertaut, Maréschal, Pauthenet \& Roult, 1964) where the moments of Ho and Fe, Cr belong to the representation Γ_{2} of Table 6. $\mathrm{Er}_{2} \mathrm{O}_{3}$, where one finds 24 points of symmetry 2 and eight points of site symmetry $\overline{3}$ is another example for such a coupling (Bertaut \& Chevalier, 1966; Moon, Koehler, Child \& Raubenheimer, 1967).

May one have spin components belonging to different representations and still be satisfied with a Hamiltonian of order two? The answer is yes. An interesting example is ErCrO_{3} (Bertaut \& Maréschal, 1967a) where above $16.8^{\circ} \mathrm{K}$ the Cr moments are in a G_{x} configuration which belongs to Γ_{4} (Table 6). Below $16 \cdot 8^{\circ} \mathrm{K}$ the rare earth orders in a C_{z} configuration which belongs to Γ_{1}. At the same time the Cr moments rotate in the $O x y$ plane so that one is left with a $G_{x}(\mathrm{Cr})$ component in Γ_{4} and a new $G_{y}(\mathrm{Cr})$ component in Γ_{1}, coupled with the rare earth.

If the spin components of each species belong to different representations, this may be interpreted as decoupling or coupling through a lower symmetry. An example is the spin structure of TbFeO_{3} (Bertaut, Chappert, Maréschal, Rebouillat \& Sivardière, 1967; $c f$. § 4).

Finally if the spin configurations of the two species belong to different \mathbf{k} vectors as in DyCrO_{3} (Bertaut \& Maréschal, 1967b) one may assume complete decoupling (of order two) and (or) the presence of higher order terms (H_{4}, H_{6}).

Nature of the coupling

The tensor $A_{\alpha \beta}\left(\mathbf{R}, \mathbf{R}^{\prime}\right)$ of (5-1) may be decomposed into a symmetrical and an antisymmetrical part (Bertaut, 1961, 1963). The latter one corresponds to the socalled Dzialoshinski-Moriya (Dzialoshinski, 1958; Moriya, 1960) vector $\mathbf{D}_{\mathbf{R R}^{\prime}}$ and gives rise to an energy term of the form $\mathbf{D}_{\mathbf{R R}^{\prime}} \cdot\left(\mathbf{S}_{\mathbf{R}} \times \mathbf{S}_{\mathbf{R}^{\prime}}\right)$. The symmetric part may again be split into two parts. The first one is a scalar and gives rise to the so called HeisenbergNéel energy (Heisenberg, 1928; Néel, 1948), denoted by $-2 \mathscr{J}_{R R^{\prime}} \mathrm{S}_{\mathbf{R}} . \mathrm{S}_{\mathbf{R}^{\prime}}$, which represents a scalar or isotropic coupling. The second part is a traceless sym-
metric tensor of order two, often written in diadic form $\boldsymbol{\Phi}_{\mathbf{R R}^{\prime}}$ and giving rise to the anisotropy energy $\mathbf{S}_{\mathbf{R}}$. $\boldsymbol{\Phi}_{\mathbf{R R}^{\prime}} \cdot \mathbf{S}_{\mathbf{R}^{\prime}} \cdot R$ and R^{\prime} may here coincide. The physical origins of $\boldsymbol{\Phi}_{\mathbf{R R}^{\prime}}$ are dipolar, pseudodipolar and crystalline field interactions. $\mathscr{J}_{R R^{\prime}}$ is called the exchange integral, $\mathbf{D}_{\mathbf{R R}^{\prime}}$ is proportional to $\lambda \mathscr{J}_{R R^{\prime}}$, and $\boldsymbol{\Phi}_{\mathbf{R R}^{\prime}}$ to λ^{2} where λ is the spin orbit coupling constant.

On the other hand group theory enables us to determine basis vectors, to construct invariants by product formation, and finally, expressing the basis vectors in terms of spins, to construct the spin Hamiltonian (5-1) which informs us about the nature of the couplings.

We illustrate this point by the example of CoO which in its magnetic ordering undergoes a tetragona** deformation. Admitting that the 4_{2} screw axis is conserved in the transition, there are two vectors V_{1} and V_{2} in the x, y plane which belong to the same irreducible representation associated with $\mathbf{k}=\left[\frac{1}{2} \frac{1}{2}\right]$.

$$
\begin{align*}
& V_{1}=S_{1 x}+S_{2 y}-S_{3 x}-S_{4 y} \tag{6-5}\\
& V_{2}=S_{1 y}-S_{2 x}-S_{1 y}+S_{4 x} .
\end{align*}
$$

V_{1}^{2}, V_{2}^{2} as well as $a\left(V_{1}^{2}+V_{2}^{2}\right)$ are invariants. One has

$$
\begin{align*}
& a\left(V_{1}^{2}+V_{2}^{2}\right)= \\
& \qquad \begin{array}{l}
a\left[\Sigma s^{2}+2 \mathbf{z} \cdot\left(\mathbf{s}_{1} \times \mathbf{s}_{2}+\mathbf{s}_{2} \times \mathbf{s}_{3}+\mathbf{s}_{3} \times \mathbf{s}_{4}+\mathbf{s}_{4} \times \mathbf{s}_{1}\right)\right. \\
\\
\left.\quad-2\left(\mathbf{s}_{1} \cdot \mathbf{s}_{3}+\mathbf{s}_{2} \cdot \mathbf{s}_{4}\right)\right]
\end{array}
\end{align*}
$$

Here \mathbf{z} is the unit vector in the z direction and small letters are used to denote the spin components in the Oxy plane [for the complete spin Hamiltonian see Bertaut (1967)]. (6-6) shows that strong DzialoshinskiMoriya coupling may occur and that $a\left(V_{1}^{2}+V_{2}^{2}\right)$ is, minimized for a negative, \mathbf{s}_{1} antiparallel to $\mathbf{s}_{3}, \mathbf{s}_{2}$ antiparallel to \mathbf{s}_{4}, but \mathbf{s}_{1} orthogonal to $\mathbf{s}_{2}, \mathbf{s}_{2}$ orthogonal to \mathbf{s}_{3} and so on. $2 a \mathbf{z}$ plays the role of the DzialoshinskiMoriya vector and is mainly responible for the tetragonal spin structure, recently proposed by van Laar (1965) and strongly supported by the large spin-orbit coupling observed in CoO.

Advantage of representation theory

Finally the advantage of representation theory over symmetry invariance (under the Shubnikov groups) is also reflected by the construction of the Hamiltonian itself. In the example of DyCrO_{3} the Dy -spin configuration belongs to a one-dimensional complex representation of the space group Pbnm ($D_{2 h}^{16}$) associated with the wave-vector $\mathbf{k}=\left[\frac{1}{2} 20\right]$. The Hamiltonian $H(\mathrm{Dy})$ will be invariant under the whole set of the symmetry operators. On the other hand, the Dy-spin structure cannot be described in any Shubnikov group belonging to the Pbnm family so that we must lower the symmetry to a, say, monoclinic Shubnikov-group. As a consequence

[^1]this will impose less stringent conditions on the coefficients in the Hamiltonian.

7. Magnetoelectricity

The reader may get the impression that the author is hostile to the use of magnetic groups. In fact the author is only defending representation theory. The main objection of the reader might be that in the abstract sense magnetic and space groups are isomorphous* so that a structure belonging to a representation of a space group G (even when the representation is not onedimensional real) also belongs to a representation of the isomorphous Shubnikov group G^{\prime}. This is perfectly correct, but still means that we would abandon symmetry invariance in favour of representation theory.
Can we ignore magnetic groups entirely? The answer is no, not only in microscopic, say atomic systems \dagger (Dimmock \& Wheeler, 1962) but also macroscopically when a magnetic system is coupled with other forms of energy.
A specific example is magnetoelectricity \ddagger Here the Hamiltonian expressed in the fields contains not only the even powers of magnetic and electric field components, but also bilinear invariant terms like $h_{m x} h_{e \beta}$ where α and β specify directions. Actually the magnetic field variable $h_{m \alpha}$ is sensitive to time reversal whereas the electric field $h_{e \beta}$ (polar vector) is not. We require the invariance of such bilinear terms under a Shubnikov group and suppose of course that the magnetic group may be described by such a group. Instead of the field description we choose, as in the preceding sections, the moment description with a bilinear term of the form $F_{m a} F_{e \beta}$ in the Hamiltonian. F_{m} and F_{e} denote magnetic and electric polarizations ($=$ sums of moments). This is done in the following steps. First one constructs the table of axial \S basis vectors belonging to the irreducible representations of the space group G. From the knowledge of the magnetic structure one is able to indicate which elements have become anti-elements and to construct a new table of representations for axial vectors in the magnetic space group G^{\prime}. Finally we construct the table of irreducible representations of polar§ basis vectors, which are representative of the electric moment structure.
As an example we have chosen LiCoPO_{4} (Mercier, Gareyte \& Bertaut, 1967) belonging to the space group
 $\frac{1}{2}-x, \frac{3}{4}, \frac{1}{2}+z ; \frac{1}{2}+x, \frac{1}{4}, \frac{1}{2}-z$ and numbered correspondingly. As generators we choose $2_{1, x}$ in $x \frac{1}{4}, 2_{1, z}$ in $\frac{1}{4} 0 z$ and $\overline{\mathrm{l}}$ in 000 . The first part of Table 12 corresponds

[^2]to the representation of axial vectors in Pnma (with the notation of §4). The spin structure (Santoro, Segal $\&$ Newnham, 1966) is described by A_{y} and belongs to the representation $\Gamma_{7}=\Gamma_{3}$, from which we can infer that the generators of the magnetic group (see the prescription of $\S 2$) are $2_{1, x}^{\prime}, 2_{1, z}$ and \bar{I}^{\prime} and consequently that the magnetic group is $P n m a^{\prime}$. In order to get the representations of $P n m a^{\prime}$ we multiply the characters of the Pnma table (in columns $2,3,4$) by,,-+- respectively and reorder the representations accordingly. This is done in the central part of Table 12.

Finally in the third part we add the representations of polar vectors. Axial and polar vectors behave in the same way under $2_{1, x}$ and $2_{1, z}$. Only the I operation has different effects so that a Γ_{g} representation for axial vectors will become a Γ_{u} representation for polar vectors and vice versa. From comparing the axial vector representations in Pnma' and the polar vector representations in Pnma of the last 6 columns of Table 12 we read the existence of two invariants of the form $F_{m y} F_{e x}\left(\Gamma_{6}\right)$ and $F_{m x} F_{e y}\left(\Gamma_{8}\right)$ which are effectively observed (Mercier et al., 1967).* Note that none of the vectors $F_{m \alpha}$ or $F_{e \beta}$ belongs to the identity representation. Thus we have to do with an effect of 'induced' magnetoelectricity. (In the magnetoelectric FeGaO_{3} (Rado, 1964) one finds an invariant $F_{m z} F_{e y}$ (Bertaut, Bassi, Buisson, Chappert, Delapalme, Pauthenet, Rebouillat \& Aléonard, 1966) with $F_{m z}$ and $F_{e y}$ belonging to the identity representation.)

We are grateful to Professor David P. Shoemaker for many improvements of style and presentation and to Professor Louis Néel for unfailing encouragement.

Appendix 1

The last relation of (5-9) is obtained by comparing:
and

$$
2_{1, x} \cdot 2_{1, y}=\left\{2_{x} .2_{y} \mid 2_{x} \tau_{y}+\tau_{x}\right\}
$$

$$
\begin{equation*}
2_{1, y} \cdot 2_{1, x}=\left\{2_{x} \cdot 2_{y} \mid 2_{y} \tau_{x}+\tau_{y}\right\}, \tag{A1-1}
\end{equation*}
$$

expressions in which the second members only differ by the translation labelled t_{12}.

The explicit forms of the matrices $\left(2_{x}\right),\left(2_{y}\right)$ and $(\overline{\mathrm{l}})$ being

$$
\begin{gather*}
\left(2_{x}\right)=\left[\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & -1 & \cdot \\
\cdot & \cdot & -1
\end{array}\right] ; \quad\left(2_{y}\right)=\left[\begin{array}{ccc}
-1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & -1
\end{array}\right] ; \\
(\overline{\mathrm{I}})=\left[\begin{array}{ccc}
-1 & \cdot & \cdot \\
\cdot & -1 & \cdot \\
\cdot & \cdot & -1
\end{array}\right] \tag{A1-2}
\end{gather*}
$$

one has

[^3]$\left(2_{x}+e\right)=\left[\begin{array}{lll}2 & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot\end{array}\right] ;\left(2_{x}-e\right)=\left[\begin{array}{ccc}\cdot & \cdot & \cdot \\ \cdot & -2 & \cdot \\ \cdot & \cdot & -2\end{array}\right]$.

In Pbnm one has for the binary screw axis applied to the point $x y z: 2_{1}, x(x, y, z)=\frac{1}{2}+x, \frac{1}{2}-y, \bar{z}$ from which

One finds

$$
\begin{equation*}
\tau_{x}=\frac{1}{2}, \frac{1}{2}, 0 \text { and similarly } \tau_{y}=\frac{111}{22} \frac{1}{2} . \tag{A1-4}
\end{equation*}
$$

$$
\begin{align*}
\mathbf{t}_{1} & =(2 x+e) \tau_{x}=1,0,0 ; \mathbf{t}_{2}=\left(2_{y}+e\right) \tau_{y}=0,1,0 \\
\mathbf{t}_{12} & =1, \overline{1}, \overline{1} ; \mathbf{t}_{13}=1,1,0 ; \mathbf{t}_{23}=1,1,1 . \tag{A1-5}
\end{align*}
$$

To save space we have written row vectors instead of column vectors in ($A 1-4$) and ($A 1-5$).

In Pbam one finds

$$
\tau_{x}=\tau_{y}=\frac{1}{2}, \frac{1}{2}, 0
$$

and

$$
\begin{align*}
\mathbf{t}_{1} & =1,0,0 ; \mathbf{t}_{2}=0,1,0 ; \mathbf{t}_{12}=1, \overline{1}, 0 \\
\mathbf{t}_{13} & =\mathbf{t}_{23}=1,1,0 \tag{A1-6}
\end{align*}
$$

Appendix 2
 Determination of irreducible representations

To determine explicit forms, let us take A_{1} diagonal and write A_{2} and A_{3} as follows,

$$
A_{1}=\left[\begin{array}{ll}
\mu & \cdot \tag{A2-1}\\
\cdot & v
\end{array}\right] ; \quad A_{2}=\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right] ; \quad A_{3}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Substitution in the six relations (5-13) yields identities which reduce the matrices to
$A_{1}=\left[\begin{array}{cc}\mu & \cdot \\ \cdot & -\mu\end{array}\right] ; A_{2}=\left[\begin{array}{rr}. & \beta \\ -\beta^{-1} & \cdot\end{array}\right] ; A_{3}=\left[\begin{array}{cc}. & b \\ b & \cdot\end{array}\right]$
with $\mu^{2}=b^{2}=1$. If we restrict ourselves to real values of β, one may take for β, μ and b any one of the eight sign combinations ± 1 which give rise to the eight representations of the following table

μ	+	$+$	-	-	$+$	+	-	-
β	+	-	+	-	+	-	$+$	-
b	+	$+$	+	$+$	-	-	-	-
	Γ_{1}^{\prime}	Γ_{2}^{\prime}		Γ_{4}^{\prime}	Γ_{5}^{\prime}		Γ_{7}^{\prime}	Γ_{8}^{\prime}

The two labelled $\Gamma_{k_{1}}$ and $\Gamma_{k_{2}}$ correspond to the choices of signs $\mu=\beta=-b=1\left(\Gamma_{5}^{\prime}\right)$ and $\mu=\beta=b=1\left(\Gamma_{1}^{\prime}\right)$.

All the other sign combinations are either equivalent to $\Gamma_{k_{1}}$ or to $\Gamma_{k_{2}}$.

$$
\begin{aligned}
& \Gamma_{2}^{\prime} \doteqdot \Gamma_{3}^{\prime} \doteqdot \Gamma_{5}^{\prime} \doteqdot \Gamma_{8}^{\prime} \doteqdot \Gamma_{k 1} \\
& \Gamma_{1}^{\prime} \doteqdot \Gamma_{4}^{\prime} \doteqdot \Gamma_{6}^{\prime} \doteqdot \Gamma_{7}^{\prime} \doteqdot \Gamma_{k_{2}}
\end{aligned}
$$

References

Belov, N. V., Neronova, N. N. \& Smirnova, T. S. (1957). Kristallografiya, 2, 315 (translation: Soviet Phys. Cryst. 2, 311).
Bertaut, E. F. (1961). C.r. Acad. Sci. Paris, 252, 2078.
Bertaut, E. F. (1963). In Treatise on Magnetism, Suhl \& Rado, Vol.III, chapter 4, p.149, New York: Academic Press.
Bertaut, E. F. (1966). Intern. Conf. on Magnetism, 13-15 October, Dresden. Printed in Magnetismus, p. 35. Leipzig: Verlag für Grundstoffindustrie.
Bertaut, E. F. (1967). In the press.
Bertaut, E. F., Bassi, G., Buisson, G., Chappert, J., Delapalme, A., Pauthenet, R., Rebouillat, J. P. \& Aleonard, R. (1966). J. Phys. 27, 433.
Bertaut, E. F., Buisson, G., Chappert, J. \& Bassi, G. (1965). C.r. Acad. Sci. Paris, 260, 3355.

Bertaut, E. F., Buisson, G., Quézel-Ambrunaz, S. \& Quézel, G. (1967). Solid State Comm. 5, 25.
Bertaut, E. F., Chappert, J., Maréschal, J., Rebouillat, J. P. \& Sivardière, J. (1967). Solid State Comm. 5, 293.

Bertaut, E. F. \& Chevalier, R. (1966). C. r. Acad. Sci. Paris, 262, 1707.
Bertaut, E. F., Coing-Boyat, J. \& Delapalme, A. (1963). Phys. Letters, 3, 178.
Bertaut, E. F. \& Maréschal, J. (1967a). Solid State Comm. 5, 93.
Bertaut, E. F. \& Maréschal, J. (1967b). J. Phys. (In the press).
Bertaut, E. F., Maréschal, J., Pauthenet, R. \& Roult, G. (1964). Proc. Intern. Conf. Magnetism, Nottingham, p: 275.
Bertaut, E. F., Maréschal, J. \& De Vries, G. (1967). J. Phys. Chem. Solids In the press.

Bertaut, E. F. \& Nhung, N. V. (1967). C. r. Acad. Sci. Paris, 264, 1416.
Bozorth, R. M., Williams, H. J. \& Walsh, D. E. (1956). Phys. Rev. 103, 572.
Dimmock, J. O. \& Wheeler, R. G. (1962). Phys. Rev. 127, 391.

Donnay, G., Corliss, L. M., Donnay, J. D. H., Elliott, N. \& Hastings, J. M. (1958). Phys. Rev. 112, 1917.

Dzialoshinski, I. E. (1958). J. Phys. Chem. Solids, 4, 241.
Elliott, R. J. (1961). Phys. Rev. 124, 346.
Hammermesh, M. (1962). Group Theory. Reading, Mass.: Addison-Wesley.
Hastings, J. M., Corliss, L. M., Kunnmann, W. \& La Placa, S. (1967). J. Phys. Chem. Solids, 28, 1089.
Heine, V. (1960). Group Theory in Quantum Mechanics. London: Pergamon Press.
Heisenberg, W. (1928). Z. Physik, 49, 619.
Kaplan, T. A. (1961). Phys. Rev. 124, 329.
Koehler, W. C., Wollan, E. O. \& Wilkinson, M. K. (1960). Phys. Rev. 118, 58.

LaAr, B. van (1965). Phys. Rev. 138 A, 584.
Mercier, M., Gareyte, J. \& Bertaut, E. F. (1967). C. r. Acad. Sci. Paris, 264 B, 979.
Moon, R. M., Koehler, W. C., Child, H. R. \& Raubenheimer, L. J. (1967). ACA Meeting January 1967, Atlanta, Georgia, U.S.A.
Moriya, T. (1960). Phys. Rev. 120, 91.
Néel, L. (1948). Ann. Phys. Lpz. (12) 3, 137.
Niggli, A. \& Wondratschek, H. (1960). Z. Kristallogr. 114, 215.
Olbrychski, K. (1963). Phys. stat. sol. 3, 1868.
Opechowski, W. \& Guccione, R. (1965). Treatise on Magnetism, Suhl \& Rado, Vol. IIA, chap.3, p. 105. New York: Academic Press.
Rado, G. T. (1964). Phys. Rev. Letters, 13, 335.
Rado, G. T. \& Folen, V. J. (1962). J. Appl. Phys. 33S, 1126.

Santoro, R. P., Segal, D. J. \& Newnham, R. E. (1966). J. Phys. Chem. Solids, 27, 1192.

Shirane, G. \& Takei, W. J. (1962). J. Phys. Soc. Japan, 17B III, 35.
Wigner, E. (1959). Group Theory, chap 26. New York: Academic Press.
Wilkinson, M. K., Koehler, W. C., Wollan, E. O. \& Cable, J. W. (1961). J. Appl. Phys. 32S, 48, 49.
Wondratschek, H. \& NigGli, A. (1961). Z. Kristallogr. 115, 1.

[^0]: * For instance in the system (4-3) of the basis vectors A, \mathbf{F}, \mathbf{C} and \mathbf{G} one has $4 \mathbf{S}_{1}=\mathbf{F}+\mathbf{C}+\mathbf{G}+\mathbf{A}$ and so on.

[^1]: * $\mathrm{MnO}, \mathrm{FeO}, \mathrm{NiO}$ deform rhombohedrically at the Néel point.

[^2]: * macrospically speaking with $R^{2}=1$.
 \dagger where R is an operator of order 4 (Wigner, 1959).
 \ddagger In a magnetoelectric compound an electric field provokes ordering of the magnetic domains and a magnetic field gives rise to an electric polarization [see Rado \& Folen (1962) and literature cited there].
 § The language is improper. By axial or polar basis vector we mean a vector which is a linear combination of axial or polar vectors respectively.

[^3]: * The group table given in this reference is a contracted version of Table 12: no distinction is made between Γ_{g} and Γ_{u} representations.

